Normative

Contents

Normative#

The immune system’s evolution spans billions of years, beginning with rudimentary defenses in single-celled organisms—chemical barriers and phagocytosis—mirroring the Pericentral network’s reflexive hits against “nonself” threats. Invertebrates like sponges evolved pattern recognition receptors (PRRs), akin to the model’s Voir layer (PRR & ILCs, 20%), detecting conserved nonself patterns (e.g., lipopolysaccharides) with moderate \( w = 1/(1 + X/Y) \), where low \( X/Y \) from clear pathogen signals boosted \( d' \). Jawed vertebrates introduced adaptive immunity—lymphocytes (CD8+, CD4+) and specific antigens—paralleling the model’s Choisis layer (50%), a leap in sensitivity that sharpened ambiguity resolution, much like the Lateral Frontoparietal network navigating tribal versus colonial inputs in Uganda. Cytokines (TNF-α) and regulatory mechanisms (Tregs, PD-1) in the Deviens layer (20%) reflect later vertebrate refinements, balancing inflammation and tolerance—akin to the Medial Frontoparietal network’s self-construction amid Africa’s Christian “noise.” The M’élĂšve layer (complement, lymphoid systems, 5%) captures a convergence of innate and adaptive arms, echoing the Cingulo-Insular network’s optimization, though its low weighting underplays this evolutionary pinnacle. From bacteria to humans, immunity evolved a “nonself” bias, with \( d' \) rising as detection (Suis to Voir) fed decision-making (Choisis) and identity (Deviens), culminating in efficient integration (M’élĂšve)—a trajectory our brain-network order mirrors.

https://www.thepinknews.com/wp-content/uploads/2025/02/Donald-Trump-Truth-Social.png

Fig. 39 I’d advise you to consider your position carefully (layer 3 fork in the road), perhaps adopting a more flexible posture (layer 4 dynamic capabilities realized), while keeping your ear to the ground (layer 2 yellow node), covering your retreat (layer 5 Athena’s shield, helmet, and horse), and watching your rear (layer 1 ecosystem and perspective).#

The model’s evolutionary nod is structurally sound: Suis (DNA/RNA, glucans) roots in ancient nonself recognition, weights like 95/5 for specific antigens hinting at adaptive precision, while Voir’s PRR focus aligns with innate origins predating adaptive leaps. Choisis’s CD8+/CD4+ split reflects vertebrate innovation, and Deviens’s regulatory nodes (Tregs, 20%) capture the feedback loops of modern immunity—though their black-edged weights (1/99 to complement) overemphasize suppression, misaligning with evolution’s proinflammatory tilt (higher \( w \) for TNF-α). M’élĂšve’s complement and lymphoid systems nod to integrated defenses, but the 5% tag belies their dominance in mammals, weakening the convergence parallel to Uganda’s resilience potential. Evolutionarily, the model tracks from reflex (Suis) to synthesis (M’élĂšve), but its static weights—e.g., 51/49 for CD8+ to TNF-α—lack the dynamism of immune adaptation, unlike TikTok’s rapid cultural noise or tribal strategies’ flexibility, where \( X/Y \) shifts with context.

Critically, the model oversimplifies evolutionary gradients: Suis flattens diverse PRR origins (e.g., fungal glucans vs. bacterial lipopolysaccharides) into uniform inputs, missing how \( d' \) grew with pathogen diversity—relevant to Africa’s blurred nonself detection under colonial “noise.” Choisis’s 50% weighting for CD8+ feels inflated against evolutionary timelines, where innate systems long preceded adaptive peaks, skewing the analogy to Uganda’s static Victorian bias over dynamic capability. Deviens’s regulatory focus (low \( w \) to complement) downplays inflammation’s ancestral role, clashing with tribal resilience’s proactive signals—say, war chants over Instagram filters. M’élĂšve’s low contribution (5%) contradicts evolution’s heavy reliance on integrated immunity, undercutting the Cingulo-Insular parallel to Africa’s untapped synthesis. No feedback loops—vital to immune evolution—appear, unlike the brain’s iterative refinement or Uganda’s need to loop heritage into modernity. Culturally, it sidesteps how immune evolution parallels resilience: ancient PRRs could map to oral traditions, adaptive cells to entrepreneurial spirit, yet TikTok’s \( X/Y \) surge finds no echo here.

In our context, the model grasps immunity’s “nonself” arc—from Suis’s reflexes to M’élĂšve’s efficiency—but stumbles on evolutionary nuance, flattening a billion-year story into rigid layers. Uganda’s identity, like immunity, evolved under pressure, yet the model’s static \( w \) and \( d' \) miss the adaptive dance of tribal survival versus digital noise. Tweaking it—weighting M’élĂšve higher, looping Tregs back to PRR, grounding Suis in Uganda’s microbial past (e.g., millet fermentation)—could mirror both immune and cultural evolution, offering a sharper lens on convergence for the next generation. How do you see immunity’s evolution informing that cultural pivot?

Hide code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

# Define the neural network layers
def define_layers():
    return {
        'Suis': ['DNA, RNA,  5%', 'Peptidoglycans, Lipoteichoics', 'Lipopolysaccharide', 'N-Formylmethionine', "Glucans, Chitin", 'Specific Antigens'],
        'Voir': ['PRR & ILCs, 20%'],  
        'Choisis': ['CD8+, 50%', 'CD4+'],  
        'Deviens': ['TNF-α, IL-6, IFN-Îł', 'PD-1 & CTLA-4', 'Tregs, IL-10, TGF-ÎČ, 20%'],  
        "M'Úléve": ['Complement System', 'Platelet System', 'Granulocyte System', 'Innate Lymphoid Cells, 5%', 'Adaptive Lymphoid Cells']  
    }

# Assign colors to nodes
def assign_colors():
    color_map = {
        'yellow': ['PRR & ILCs, 20%'],  
        'paleturquoise': ['Specific Antigens', 'CD4+', 'Tregs, IL-10, TGF-ÎČ, 20%', 'Adaptive Lymphoid Cells'],  
        'lightgreen': ["Glucans, Chitin", 'PD-1 & CTLA-4', 'Platelet System', 'Innate Lymphoid Cells, 5%', 'Granulocyte System'],  
        'lightsalmon': ['Lipopolysaccharide', 'N-Formylmethionine', 'CD8+, 50%', 'TNF-α, IL-6, IFN-γ', 'Complement System'],
    }
    return {node: color for color, nodes in color_map.items() for node in nodes}

# Define edge weights
def define_edges():
    return {
        ('DNA, RNA,  5%', 'PRR & ILCs, 20%'): '1/99',
        ('Peptidoglycans, Lipoteichoics', 'PRR & ILCs, 20%'): '5/95',
        ('Lipopolysaccharide', 'PRR & ILCs, 20%'): '20/80',
        ('N-Formylmethionine', 'PRR & ILCs, 20%'): '51/49',
        ("Glucans, Chitin", 'PRR & ILCs, 20%'): '80/20',
        ('Specific Antigens', 'PRR & ILCs, 20%'): '95/5',
        ('PRR & ILCs, 20%', 'CD8+, 50%'): '20/80',
        ('PRR & ILCs, 20%', 'CD4+'): '80/20',
        ('CD8+, 50%', 'TNF-α, IL-6, IFN-γ'): '49/51',
        ('CD8+, 50%', 'PD-1 & CTLA-4'): '80/20',
        ('CD8+, 50%', 'Tregs, IL-10, TGF-ÎČ, 20%'): '95/5',
        ('CD4+', 'TNF-α, IL-6, IFN-γ'): '5/95',
        ('CD4+', 'PD-1 & CTLA-4'): '20/80',
        ('CD4+', 'Tregs, IL-10, TGF-ÎČ, 20%'): '51/49',
        ('TNF-α, IL-6, IFN-γ', 'Complement System'): '80/20',
        ('TNF-α, IL-6, IFN-γ', 'Platelet System'): '85/15',
        ('TNF-α, IL-6, IFN-γ', 'Granulocyte System'): '90/10',
        ('TNF-α, IL-6, IFN-γ', 'Innate Lymphoid Cells, 5%'): '95/5',
        ('TNF-α, IL-6, IFN-γ', 'Adaptive Lymphoid Cells'): '99/1',
        ('PD-1 & CTLA-4', 'Complement System'): '1/9',
        ('PD-1 & CTLA-4', 'Platelet System'): '1/8',
        ('PD-1 & CTLA-4', 'Granulocyte System'): '1/7',
        ('PD-1 & CTLA-4', 'Innate Lymphoid Cells, 5%'): '1/6',
        ('PD-1 & CTLA-4', 'Adaptive Lymphoid Cells'): '1/5',
        ('Tregs, IL-10, TGF-ÎČ, 20%', 'Complement System'): '1/99',
        ('Tregs, IL-10, TGF-ÎČ, 20%', 'Platelet System'): '5/95',
        ('Tregs, IL-10, TGF-ÎČ, 20%', 'Granulocyte System'): '10/90',
        ('Tregs, IL-10, TGF-ÎČ, 20%', 'Innate Lymphoid Cells, 5%'): '15/85',
        ('Tregs, IL-10, TGF-ÎČ, 20%', 'Adaptive Lymphoid Cells'): '20/80'
    }

# Define edges to be highlighted in black
def define_black_edges():
    return {
        ('PRR & ILCs, 20%', 'CD4+'): '80/20',
        ('CD4+', 'TNF-α, IL-6, IFN-γ'): '5/95',
        ('CD4+', 'PD-1 & CTLA-4'): '20/80',
        ('CD4+', 'Tregs, IL-10, TGF-ÎČ, 20%'): '51/49',
    }

# Calculate node positions
def calculate_positions(layer, x_offset):
    y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
    return [(x_offset, y) for y in y_positions]

# Create and visualize the neural network graph
def visualize_nn():
    layers = define_layers()
    colors = assign_colors()
    edges = define_edges()
    black_edges = define_black_edges()
    
    G = nx.DiGraph()
    pos = {}
    node_colors = []
    
    # Create mapping from original node names to numbered labels
    mapping = {}
    counter = 1
    for layer in layers.values():
        for node in layer:
            mapping[node] = f"{counter}. {node}"
            counter += 1
            
    # Add nodes with new numbered labels and assign positions
    for i, (layer_name, nodes) in enumerate(layers.items()):
        positions = calculate_positions(nodes, x_offset=i * 2)
        for node, position in zip(nodes, positions):
            new_node = mapping[node]
            G.add_node(new_node, layer=layer_name)
            pos[new_node] = position
            node_colors.append(colors.get(node, 'lightgray'))
    
    # Add edges with updated node labels
    edge_colors = []
    for (source, target), weight in edges.items():
        if source in mapping and target in mapping:
            new_source = mapping[source]
            new_target = mapping[target]
            G.add_edge(new_source, new_target, weight=weight)
            edge_colors.append('black' if (source, target) in black_edges else 'lightgrey')
    
    # Draw the graph
    plt.figure(figsize=(12, 8))
    edges_labels = {(u, v): d["weight"] for u, v, d in G.edges(data=True)}
    
    nx.draw(
        G, pos, with_labels=True, node_color=node_colors, edge_color=edge_colors,
        node_size=3000, font_size=9, connectionstyle="arc3,rad=0.2"
    )
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edges_labels, font_size=8)
    plt.title("OPRAHℱ: Nonself & the Salient Network", fontsize=18)
    plt.show()

# Run the visualization
visualize_nn()
../../_images/eea879baf851a421b2d818881ada2190abad4691b952eb7c8abd271dcf6b6796.png
figures/blanche.*

Fig. 40 Space is Apollonian and Time Dionysian. They are the static representation and the dynamic emergent. Ain’t that somethin?#

#