Normative#
The immune systemâs evolution spans billions of years, beginning with rudimentary defenses in single-celled organismsâchemical barriers and phagocytosisâmirroring the Pericentral networkâs reflexive hits against ânonselfâ threats. Invertebrates like sponges evolved pattern recognition receptors (PRRs), akin to the modelâs Voir layer (PRR & ILCs, 20%), detecting conserved nonself patterns (e.g., lipopolysaccharides) with moderate \( w = 1/(1 + X/Y) \), where low \( X/Y \) from clear pathogen signals boosted \( d' \). Jawed vertebrates introduced adaptive immunityâlymphocytes (CD8+, CD4+) and specific antigensâparalleling the modelâs Choisis layer (50%), a leap in sensitivity that sharpened ambiguity resolution, much like the Lateral Frontoparietal network navigating tribal versus colonial inputs in Uganda. Cytokines (TNF-α) and regulatory mechanisms (Tregs, PD-1) in the Deviens layer (20%) reflect later vertebrate refinements, balancing inflammation and toleranceâakin to the Medial Frontoparietal networkâs self-construction amid Africaâs Christian ânoise.â The MâĂ©lĂšve layer (complement, lymphoid systems, 5%) captures a convergence of innate and adaptive arms, echoing the Cingulo-Insular networkâs optimization, though its low weighting underplays this evolutionary pinnacle. From bacteria to humans, immunity evolved a ânonselfâ bias, with \( d' \) rising as detection (Suis to Voir) fed decision-making (Choisis) and identity (Deviens), culminating in efficient integration (MâĂ©lĂšve)âa trajectory our brain-network order mirrors.

Fig. 39 Iâd advise you to consider your position carefully (layer 3 fork in the road), perhaps adopting a more flexible posture (layer 4 dynamic capabilities realized), while keeping your ear to the ground (layer 2 yellow node), covering your retreat (layer 5 Athenaâs shield, helmet, and horse), and watching your rear (layer 1 ecosystem and perspective).#
The modelâs evolutionary nod is structurally sound: Suis (DNA/RNA, glucans) roots in ancient nonself recognition, weights like 95/5 for specific antigens hinting at adaptive precision, while Voirâs PRR focus aligns with innate origins predating adaptive leaps. Choisisâs CD8+/CD4+ split reflects vertebrate innovation, and Deviensâs regulatory nodes (Tregs, 20%) capture the feedback loops of modern immunityâthough their black-edged weights (1/99 to complement) overemphasize suppression, misaligning with evolutionâs proinflammatory tilt (higher \( w \) for TNF-α). MâĂ©lĂšveâs complement and lymphoid systems nod to integrated defenses, but the 5% tag belies their dominance in mammals, weakening the convergence parallel to Ugandaâs resilience potential. Evolutionarily, the model tracks from reflex (Suis) to synthesis (MâĂ©lĂšve), but its static weightsâe.g., 51/49 for CD8+ to TNF-αâlack the dynamism of immune adaptation, unlike TikTokâs rapid cultural noise or tribal strategiesâ flexibility, where \( X/Y \) shifts with context.
Critically, the model oversimplifies evolutionary gradients: Suis flattens diverse PRR origins (e.g., fungal glucans vs. bacterial lipopolysaccharides) into uniform inputs, missing how \( d' \) grew with pathogen diversityârelevant to Africaâs blurred nonself detection under colonial ânoise.â Choisisâs 50% weighting for CD8+ feels inflated against evolutionary timelines, where innate systems long preceded adaptive peaks, skewing the analogy to Ugandaâs static Victorian bias over dynamic capability. Deviensâs regulatory focus (low \( w \) to complement) downplays inflammationâs ancestral role, clashing with tribal resilienceâs proactive signalsâsay, war chants over Instagram filters. MâĂ©lĂšveâs low contribution (5%) contradicts evolutionâs heavy reliance on integrated immunity, undercutting the Cingulo-Insular parallel to Africaâs untapped synthesis. No feedback loopsâvital to immune evolutionâappear, unlike the brainâs iterative refinement or Ugandaâs need to loop heritage into modernity. Culturally, it sidesteps how immune evolution parallels resilience: ancient PRRs could map to oral traditions, adaptive cells to entrepreneurial spirit, yet TikTokâs \( X/Y \) surge finds no echo here.
In our context, the model grasps immunityâs ânonselfâ arcâfrom Suisâs reflexes to MâĂ©lĂšveâs efficiencyâbut stumbles on evolutionary nuance, flattening a billion-year story into rigid layers. Ugandaâs identity, like immunity, evolved under pressure, yet the modelâs static \( w \) and \( d' \) miss the adaptive dance of tribal survival versus digital noise. Tweaking itâweighting MâĂ©lĂšve higher, looping Tregs back to PRR, grounding Suis in Ugandaâs microbial past (e.g., millet fermentation)âcould mirror both immune and cultural evolution, offering a sharper lens on convergence for the next generation. How do you see immunityâs evolution informing that cultural pivot?
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network layers
def define_layers():
return {
'Suis': ['DNA, RNA, 5%', 'Peptidoglycans, Lipoteichoics', 'Lipopolysaccharide', 'N-Formylmethionine', "Glucans, Chitin", 'Specific Antigens'],
'Voir': ['PRR & ILCs, 20%'],
'Choisis': ['CD8+, 50%', 'CD4+'],
'Deviens': ['TNF-α, IL-6, IFN-Îł', 'PD-1 & CTLA-4', 'Tregs, IL-10, TGF-ÎČ, 20%'],
"M'Úléve": ['Complement System', 'Platelet System', 'Granulocyte System', 'Innate Lymphoid Cells, 5%', 'Adaptive Lymphoid Cells']
}
# Assign colors to nodes
def assign_colors():
color_map = {
'yellow': ['PRR & ILCs, 20%'],
'paleturquoise': ['Specific Antigens', 'CD4+', 'Tregs, IL-10, TGF-ÎČ, 20%', 'Adaptive Lymphoid Cells'],
'lightgreen': ["Glucans, Chitin", 'PD-1 & CTLA-4', 'Platelet System', 'Innate Lymphoid Cells, 5%', 'Granulocyte System'],
'lightsalmon': ['Lipopolysaccharide', 'N-Formylmethionine', 'CD8+, 50%', 'TNF-α, IL-6, IFN-γ', 'Complement System'],
}
return {node: color for color, nodes in color_map.items() for node in nodes}
# Define edge weights
def define_edges():
return {
('DNA, RNA, 5%', 'PRR & ILCs, 20%'): '1/99',
('Peptidoglycans, Lipoteichoics', 'PRR & ILCs, 20%'): '5/95',
('Lipopolysaccharide', 'PRR & ILCs, 20%'): '20/80',
('N-Formylmethionine', 'PRR & ILCs, 20%'): '51/49',
("Glucans, Chitin", 'PRR & ILCs, 20%'): '80/20',
('Specific Antigens', 'PRR & ILCs, 20%'): '95/5',
('PRR & ILCs, 20%', 'CD8+, 50%'): '20/80',
('PRR & ILCs, 20%', 'CD4+'): '80/20',
('CD8+, 50%', 'TNF-α, IL-6, IFN-γ'): '49/51',
('CD8+, 50%', 'PD-1 & CTLA-4'): '80/20',
('CD8+, 50%', 'Tregs, IL-10, TGF-ÎČ, 20%'): '95/5',
('CD4+', 'TNF-α, IL-6, IFN-γ'): '5/95',
('CD4+', 'PD-1 & CTLA-4'): '20/80',
('CD4+', 'Tregs, IL-10, TGF-ÎČ, 20%'): '51/49',
('TNF-α, IL-6, IFN-γ', 'Complement System'): '80/20',
('TNF-α, IL-6, IFN-γ', 'Platelet System'): '85/15',
('TNF-α, IL-6, IFN-γ', 'Granulocyte System'): '90/10',
('TNF-α, IL-6, IFN-γ', 'Innate Lymphoid Cells, 5%'): '95/5',
('TNF-α, IL-6, IFN-γ', 'Adaptive Lymphoid Cells'): '99/1',
('PD-1 & CTLA-4', 'Complement System'): '1/9',
('PD-1 & CTLA-4', 'Platelet System'): '1/8',
('PD-1 & CTLA-4', 'Granulocyte System'): '1/7',
('PD-1 & CTLA-4', 'Innate Lymphoid Cells, 5%'): '1/6',
('PD-1 & CTLA-4', 'Adaptive Lymphoid Cells'): '1/5',
('Tregs, IL-10, TGF-ÎČ, 20%', 'Complement System'): '1/99',
('Tregs, IL-10, TGF-ÎČ, 20%', 'Platelet System'): '5/95',
('Tregs, IL-10, TGF-ÎČ, 20%', 'Granulocyte System'): '10/90',
('Tregs, IL-10, TGF-ÎČ, 20%', 'Innate Lymphoid Cells, 5%'): '15/85',
('Tregs, IL-10, TGF-ÎČ, 20%', 'Adaptive Lymphoid Cells'): '20/80'
}
# Define edges to be highlighted in black
def define_black_edges():
return {
('PRR & ILCs, 20%', 'CD4+'): '80/20',
('CD4+', 'TNF-α, IL-6, IFN-γ'): '5/95',
('CD4+', 'PD-1 & CTLA-4'): '20/80',
('CD4+', 'Tregs, IL-10, TGF-ÎČ, 20%'): '51/49',
}
# Calculate node positions
def calculate_positions(layer, x_offset):
y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
return [(x_offset, y) for y in y_positions]
# Create and visualize the neural network graph
def visualize_nn():
layers = define_layers()
colors = assign_colors()
edges = define_edges()
black_edges = define_black_edges()
G = nx.DiGraph()
pos = {}
node_colors = []
# Create mapping from original node names to numbered labels
mapping = {}
counter = 1
for layer in layers.values():
for node in layer:
mapping[node] = f"{counter}. {node}"
counter += 1
# Add nodes with new numbered labels and assign positions
for i, (layer_name, nodes) in enumerate(layers.items()):
positions = calculate_positions(nodes, x_offset=i * 2)
for node, position in zip(nodes, positions):
new_node = mapping[node]
G.add_node(new_node, layer=layer_name)
pos[new_node] = position
node_colors.append(colors.get(node, 'lightgray'))
# Add edges with updated node labels
edge_colors = []
for (source, target), weight in edges.items():
if source in mapping and target in mapping:
new_source = mapping[source]
new_target = mapping[target]
G.add_edge(new_source, new_target, weight=weight)
edge_colors.append('black' if (source, target) in black_edges else 'lightgrey')
# Draw the graph
plt.figure(figsize=(12, 8))
edges_labels = {(u, v): d["weight"] for u, v, d in G.edges(data=True)}
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color=edge_colors,
node_size=3000, font_size=9, connectionstyle="arc3,rad=0.2"
)
nx.draw_networkx_edge_labels(G, pos, edge_labels=edges_labels, font_size=8)
plt.title("OPRAHâą: Nonself & the Salient Network", fontsize=18)
plt.show()
# Run the visualization
visualize_nn()

Fig. 40 Space is Apollonian and Time Dionysian. They are the static representation and the dynamic emergent. Ainât that somethin?#