Traditional#
The model, coded in Python with layers labeled Suis, Voir, Choisis, Deviens, and M’élève, maps immune recognition and response onto a directed graph, echoing our exploration of “nonself” detection and cultural resilience. Suis, with nodes like DNA/RNA and lipopolysaccharides (5% contribution), mirrors the Pericentral network’s reflexive role—detecting nonself signals (pathogens) with varying weights (1/99 to 95/5) that align with signal-to-noise odds (\( X/Y \)). A low \( X/Y \) (e.g., 1/99 for DNA/RNA) yields a high \( w = 1/(1 + X/Y) \), suggesting weak detection, while 95/5 for specific antigens spikes \( w \), reflecting strong hits—apt for Uganda’s tribal reflexes against clear threats but less so for subtle colonial “noise.” Voir, with PRR & ILCs (20%), ties to the Dorsal Frontoparietal network’s nonself focus, bridging innate recognition to adaptive responses (20/80 to CD8+, 80/20 to CD4+). Its moderate \( w \) captures Africa’s partial sensitivity (\( d' \)) to foreign systems, integrating rather than rejecting them, much like TikTok’s global blur. Choisis, with CD8+ (50%) and CD4+, reflects the Lateral Frontoparietal network’s ambiguity—choosing between proinflammatory (TNF-α, 49/51) and regulatory (Tregs, 95/5) paths, a mid-range \( w \) paralleling Uganda’s hybrid identity struggles under noisy \( X/Y \) from Christianity or Instagram.

Fig. 37 I’d advise you to consider your position carefully (layer 3 fork in the road), perhaps adopting a more flexible posture (layer 4 dynamic capabilities realized), while keeping your ear to the ground (layer 2 yellow node), covering your retreat (layer 5 Athena’s shield, helmet, and horse), and watching your rear (layer 1 ecosystem and perspective).#
Deviens, featuring cytokines (TNF-α), checkpoints (PD-1), and Tregs (20%), aligns with the Medial Frontoparietal network’s self-construction, balancing inflammation (80/20 to complement) and suppression (1/99 to complement from Tregs). Its black-edged Tregs connections (1/99 to 20/80) highlight a bias toward regulation—low \( w \), low \( d' \)—mirroring Africa’s inward focus over nonself rejection, perhaps a static Victorian echo or existential pang post-Christianity. M’élève, with complement and lymphoid systems (5%), evokes the Cingulo-Insular network’s convergence, aiming for efficiency (high \( w \) from TNF-α’s 99/1 to adaptive cells), yet its low percentages suggest untapped potential, like Uganda’s resilience strategies drowned by digital noise. The model’s strength lies in its layered progression—mimicking our reflex-to-synthesis order—and its edge weights, which quantify signal strength, resonating with \( w \) and \( d' \). Visually, the color-coded nodes (yellow for PRR, lightsalmon for TNF-α) clarify roles, and the graph’s arcs suggest dynamic interplay, akin to tribal adaptability.
However, the critique sharpens here: the model oversimplifies immune complexity, flattening diverse PRR signals (e.g., glucans vs. lipopolysaccharides) into uniform Voir inputs, risking a low \( d' \) for nuanced threats—parallel to Uganda missing subtle colonial distortions. Percentages (5%, 20%, 50%) feel arbitrary, lacking empirical grounding, unlike our culturally contextual \( X/Y \). The weights (e.g., 51/49) imply precision, but without biological or statistical backing, they’re speculative, weakening the analogy to Africa’s historical signal detection failures. Culturally, it doesn’t grapple with TikTok’s noise or tribal resilience directly—Suis could include oral traditions, M’élève entrepreneurial spirit—to reflect Uganda’s next generation. The linear flow (Suis to M’élève) clashes with our convergence ideal; feedback loops (e.g., Tregs back to PRR) are absent, unlike the Cingulo-Insular’s integrative promise. Visually, it’s compelling, but the “OPRAH™” branding feels forced, diluting its gravitas.
In our context, the model captures the “nonself” bias we’ve traced—Suis as reflex, Voir as detection—but falters at ambiguity and identity (Choisis, Deviens), where Uganda’s \( X/Y \) soars, and misses convergence (M’élève), where resilience could lower it. It’s a skeletal echo of our discussion, strong in structure but thin on cultural flesh. Refining weights with data, looping feedback, and rooting nodes in Ugandan specifics—say, replacing glucans with millet rituals—could align it closer to our signal detection lens, offering a sharper critique of Africa’s past and a blueprint for its youth.
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network layers
def define_layers():
return {
'Suis': ['DNA, RNA, 5%', 'Peptidoglycans, Lipoteichoics', 'Lipopolysaccharide', 'N-Formylmethionine', "Glucans, Chitin", 'Specific Antigens'],
'Voir': ['PRR & ILCs, 20%'],
'Choisis': ['CD8+, 50%', 'CD4+'],
'Deviens': ['TNF-α, IL-6, IFN-γ', 'PD-1 & CTLA-4', 'Tregs, IL-10, TGF-β, 20%'],
"M'èléve": ['Complement System', 'Platelet System', 'Granulocyte System', 'Innate Lymphoid Cells, 5%', 'Adaptive Lymphoid Cells']
}
# Assign colors to nodes
def assign_colors():
color_map = {
'yellow': ['PRR & ILCs, 20%'],
'paleturquoise': ['Specific Antigens', 'CD4+', 'Tregs, IL-10, TGF-β, 20%', 'Adaptive Lymphoid Cells'],
'lightgreen': ["Glucans, Chitin", 'PD-1 & CTLA-4', 'Platelet System', 'Innate Lymphoid Cells, 5%', 'Granulocyte System'],
'lightsalmon': ['Lipopolysaccharide', 'N-Formylmethionine', 'CD8+, 50%', 'TNF-α, IL-6, IFN-γ', 'Complement System'],
}
return {node: color for color, nodes in color_map.items() for node in nodes}
# Define edge weights
def define_edges():
return {
('DNA, RNA, 5%', 'PRR & ILCs, 20%'): '1/99',
('Peptidoglycans, Lipoteichoics', 'PRR & ILCs, 20%'): '5/95',
('Lipopolysaccharide', 'PRR & ILCs, 20%'): '20/80',
('N-Formylmethionine', 'PRR & ILCs, 20%'): '51/49',
("Glucans, Chitin", 'PRR & ILCs, 20%'): '80/20',
('Specific Antigens', 'PRR & ILCs, 20%'): '95/5',
('PRR & ILCs, 20%', 'CD8+, 50%'): '20/80',
('PRR & ILCs, 20%', 'CD4+'): '80/20',
('CD8+, 50%', 'TNF-α, IL-6, IFN-γ'): '49/51',
('CD8+, 50%', 'PD-1 & CTLA-4'): '80/20',
('CD8+, 50%', 'Tregs, IL-10, TGF-β, 20%'): '95/5',
('CD4+', 'TNF-α, IL-6, IFN-γ'): '5/95',
('CD4+', 'PD-1 & CTLA-4'): '20/80',
('CD4+', 'Tregs, IL-10, TGF-β, 20%'): '51/49',
('TNF-α, IL-6, IFN-γ', 'Complement System'): '80/20',
('TNF-α, IL-6, IFN-γ', 'Platelet System'): '85/15',
('TNF-α, IL-6, IFN-γ', 'Granulocyte System'): '90/10',
('TNF-α, IL-6, IFN-γ', 'Innate Lymphoid Cells, 5%'): '95/5',
('TNF-α, IL-6, IFN-γ', 'Adaptive Lymphoid Cells'): '99/1',
('PD-1 & CTLA-4', 'Complement System'): '1/9',
('PD-1 & CTLA-4', 'Platelet System'): '1/8',
('PD-1 & CTLA-4', 'Granulocyte System'): '1/7',
('PD-1 & CTLA-4', 'Innate Lymphoid Cells, 5%'): '1/6',
('PD-1 & CTLA-4', 'Adaptive Lymphoid Cells'): '1/5',
('Tregs, IL-10, TGF-β, 20%', 'Complement System'): '1/99',
('Tregs, IL-10, TGF-β, 20%', 'Platelet System'): '5/95',
('Tregs, IL-10, TGF-β, 20%', 'Granulocyte System'): '10/90',
('Tregs, IL-10, TGF-β, 20%', 'Innate Lymphoid Cells, 5%'): '15/85',
('Tregs, IL-10, TGF-β, 20%', 'Adaptive Lymphoid Cells'): '20/80'
}
# Define edges to be highlighted in black
def define_black_edges():
return {
('DNA, RNA, 5%', 'PRR & ILCs, 20%'): '1/99',
('Peptidoglycans, Lipoteichoics', 'PRR & ILCs, 20%'): '5/95',
('Lipopolysaccharide', 'PRR & ILCs, 20%'): '20/80',
('N-Formylmethionine', 'PRR & ILCs, 20%'): '51/49',
("Glucans, Chitin", 'PRR & ILCs, 20%'): '80/20',
('Specific Antigens', 'PRR & ILCs, 20%'): '95/5',
}
# Calculate node positions
def calculate_positions(layer, x_offset):
y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
return [(x_offset, y) for y in y_positions]
# Create and visualize the neural network graph
def visualize_nn():
layers = define_layers()
colors = assign_colors()
edges = define_edges()
black_edges = define_black_edges()
G = nx.DiGraph()
pos = {}
node_colors = []
# Create mapping from original node names to numbered labels
mapping = {}
counter = 1
for layer in layers.values():
for node in layer:
mapping[node] = f"{counter}. {node}"
counter += 1
# Add nodes with new numbered labels and assign positions
for i, (layer_name, nodes) in enumerate(layers.items()):
positions = calculate_positions(nodes, x_offset=i * 2)
for node, position in zip(nodes, positions):
new_node = mapping[node]
G.add_node(new_node, layer=layer_name)
pos[new_node] = position
node_colors.append(colors.get(node, 'lightgray'))
# Add edges with updated node labels
edge_colors = []
for (source, target), weight in edges.items():
if source in mapping and target in mapping:
new_source = mapping[source]
new_target = mapping[target]
G.add_edge(new_source, new_target, weight=weight)
edge_colors.append('black' if (source, target) in black_edges else 'lightgrey')
# Draw the graph
plt.figure(figsize=(12, 8))
edges_labels = {(u, v): d["weight"] for u, v, d in G.edges(data=True)}
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color=edge_colors,
node_size=3000, font_size=9, connectionstyle="arc3,rad=0.2"
)
nx.draw_networkx_edge_labels(G, pos, edge_labels=edges_labels, font_size=8)
plt.title("OPRAH™ aAPCs", fontsize=18)
plt.show()
# Run the visualization
visualize_nn()

Fig. 38 While neural biology inspired neural networks in machine learning, the realization that scaling laws apply so beautifully to machine learning has led to a divergence in the process of generation of intelligence. Biology is constrained by the Red Queen, whereas mankind is quite open to destroying the Ecosystem-Cost function for the sake of generating the most powerful AI.#