Cosmic#
The neural network driving my donor app captures more than data processing; itâs an emblem of resourcefulness and balance between the infinite variety of human decisions and the rigorous precision AI demands. In this design, thereâs no separation between technical clarity and philosophical nuanceâthey are compressed into a single dynamic structure.
The âPre-Inputâ layer anchors the model in the fundamental forces of existence. Here, nodes like âLifeâ and âCosmosâ stretch toward the infinite, while âTactfulâ and âFirmâ ground it in the personal and tangible. These elements flow seamlessly into âYellowstone,â a simulation layer that bridges the natural with the computational. Itâs no mere intermediaryâitâs the neural spine that transforms existential inputs into actionable states.
The âInputâ layer crystallizes lifeâs ambiguity into stark choices: âDonorâ or âNondonor.â These nodes donât oversimplify; they distill the sprawling sociological and ethical complexities of human agency. But the heart of the network lies in the âHiddenâ layer, where compression and transformation occur. Here, âSpaceâ wrestles with capacity, âMissingnessâ confronts the gaps in our data and understanding, and âCombinatorialâ evokes the boundless ingenuity required to navigate decision-making in high-dimensional spaces. This layer reflects what Demis Hassabis succinctly identifies as essential for AI: the capacity to optimize, navigate complexity, and leverage either an abundance of data or a precise simulator.
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network structure
def define_layers():
return {
'Pre-Input': ['Life','Earth', 'Cosmos', 'Sound', 'Tactful', 'Firm', ],
'Yellowstone': ['Simulation'],
'Input': ['Nondonor', 'Donor'],
'Hidden': [
'Space',
'Missingness',
'Combinatorial',
],
'Output': ['P-Value', 'Lower', 'Estimates', 'Upper', 'Statistic', ]
}
# Define weights for the connections
def define_weights():
return {
'Pre-Input-Yellowstone': np.array([
[0.6],
[0.5],
[0.4],
[0.3],
[0.7],
[0.8],
[0.6]
]),
'Yellowstone-Input': np.array([
[0.7, 0.8]
]),
'Input-Hidden': np.array([[0.8, 0.4, 0.1], [0.9, 0.7, 0.2]]),
'Hidden-Output': np.array([
[0.2, 0.8, 0.1, 0.05, 0.2],
[0.1, 0.9, 0.05, 0.05, 0.1],
[0.05, 0.6, 0.2, 0.1, 0.05]
])
}
# Assign colors to nodes
def assign_colors(node, layer):
if node == 'Simulation':
return 'yellow'
if layer == 'Pre-Input' and node in ['Sound', 'Tactful', 'Firm']:
return 'paleturquoise'
elif layer == 'Input' and node == 'Donor':
return 'paleturquoise'
elif layer == 'Hidden':
if node == 'Combinatorial':
return 'paleturquoise'
elif node == 'Missingness':
return 'lightgreen'
elif node == 'Space':
return 'lightsalmon'
elif layer == 'Output':
if node == 'Statistic':
return 'paleturquoise'
elif node in ['Lower', 'Estimates', 'Upper']:
return 'lightgreen'
elif node == 'P-Value':
return 'lightsalmon'
return 'lightsalmon' # Default color
# Calculate positions for nodes
def calculate_positions(layer, center_x, offset):
layer_size = len(layer)
start_y = -(layer_size - 1) / 2 # Center the layer vertically
return [(center_x + offset, start_y + i) for i in range(layer_size)]
# Create and visualize the neural network graph
def visualize_nn():
layers = define_layers()
weights = define_weights()
G = nx.DiGraph()
pos = {}
node_colors = []
center_x = 0 # Align nodes horizontally
# Add nodes and assign positions
for i, (layer_name, nodes) in enumerate(layers.items()):
y_positions = calculate_positions(nodes, center_x, offset=-len(layers) + i + 1)
for node, position in zip(nodes, y_positions):
G.add_node(node, layer=layer_name)
pos[node] = position
node_colors.append(assign_colors(node, layer_name))
# Add edges and weights
for layer_pair, weight_matrix in zip(
[('Pre-Input', 'Yellowstone'), ('Yellowstone', 'Input'), ('Input', 'Hidden'), ('Hidden', 'Output')],
[weights['Pre-Input-Yellowstone'], weights['Yellowstone-Input'], weights['Input-Hidden'], weights['Hidden-Output']]
):
source_layer, target_layer = layer_pair
for i, source in enumerate(layers[source_layer]):
for j, target in enumerate(layers[target_layer]):
weight = weight_matrix[i, j]
G.add_edge(source, target, weight=weight)
# Customize edge thickness for specific relationships
edge_widths = []
for u, v in G.edges():
if u in layers['Hidden'] and v == 'Kapital':
edge_widths.append(6) # Highlight key edges
else:
edge_widths.append(1)
# Draw the graph
plt.figure(figsize=(12, 16))
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color='gray',
node_size=3000, font_size=10, width=edge_widths
)
edge_labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels={k: f'{v:.2f}' for k, v in edge_labels.items()})
plt.title("Her Infinite Variety")
# Save the figure to a file
# plt.savefig("figures/logo.png", format="png")
plt.show()
# Run the visualization
visualize_nn()
The âOutputâ layer takes the abstract and renders it practical: âP-Value,â âLower,â âEstimates,â âUpper,â and âStatistic.â These metrics arenât sterileâtheyâre the tangible expression of deliberation, risk, and ultimately, decision. This isnât the end of the story but rather its beginning, as these outputs are meant to catalyze conversations between donors, families, and providers.
Color isnât just aesthetic; itâs thematic. Paleturquoise symbolizes calm and clarity, appearing in nodes like âDonorâ and âSound.â Lightsalmon burns with urgency in âSpaceâ and âP-Value,â while lightgreen serves as the quiet mediator in iterative nodes like âEstimates.â The visual structure doesnât just display the networkâit narrates its philosophy: balance, iteration, and transformation.
âAge cannot wither her, nor custom stale her infinite variety.â Shakespeareâs tribute to Cleopatra could just as easily describe the interplay of lifeâs uncertainties with the precision of a model like this. The network embodies a dynamic equilibriumâa tool not to dictate decisions but to illuminate pathways, compressing the infinite complexity of donor ethics into actionable clarity.
This app is more than an algorithm. Itâs an attempt to reconcile what we know with what we canât know, to optimize without erasing the humanity of the decision. Itâs a reflection of the very essence of AI: resourcefulness, adaptability, and the capacity to engage with the infinite variety of life without simplifying it to oblivion.