Opioid#
\(\frac{\partial ^2y}{\partial t^2}\)#
1. Sun
\
2. Chlorophyll -> 4. Animals -> 5. Man -> 6. Worms
/
3. Plants
Show code cell source
# Not terribly convincing
import numpy as np
import pandas as pd
import wbdata
import matplotlib.pyplot as plt
import datetime
# Define the start and end year for the data
start_year = 1973
end_year = 2023
# Fetching the crude death rate data from the World Bank
data = wbdata.get_dataframe(indicators={'SP.DYN.CDRT.IN': 'Crude Death Rate'},
country='US')
# Filter data for the specific date range and sort it
data = data[(data.index >= str(start_year)) & (data.index <= str(end_year))]
data = data.sort_index(ascending=True)
# Reset index to have years as a column
data = data.reset_index()
# Extracting the relevant columns
years = data['date'].astype(int).values
mortality_rates = data['Crude Death Rate'].values
# Calculating the year-over-year percentage change in mortality rates
yearly_change = [(mortality_rates[i] - mortality_rates[i-1]) / mortality_rates[i-1] * 100 for i in range(1, len(mortality_rates))]
# Adjusting the years for the change data
change_years = years[1:]
# Plotting the yearly change in mortality rates
plt.figure(figsize=(12, 6))
plt.plot(change_years, yearly_change, marker='o', color='red')
# Adding a horizontal line at y=0
plt.axhline(y=0, color='black', linestyle='-')
# Setting the title and labels
plt.title("Year-over-Year Percentage Change in U.S. Mortality Rate (1974-2016)")
plt.xlabel("Year")
plt.ylabel("Percentage Change in Mortality Rate")
# Customizing the grid to be dotted
plt.grid(True, linestyle=':')
# Removing the top and right spines (rims)
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
# Display the plot
plt.show()
Show code cell output
Life
Eminem (1999-2003)
Algorithm
Vance
ii7b5:
Iraq
2003-2007V7:
Ohio State
2007-2009i:
Yale Law
2011-2013
Morality
Hillbilly (2016)
Trump (2016-2020)
Ballot (2024)
Year |
Event |
---|---|
1952 |
Purdue Pharma is founded by the Sackler brothers, Raymond, Mortimer, and Arthur Sackler. |
1996 |
Purdue introduces OxyContin, a time-released formulation of oxycodone, marketed as a safe, less addictive painkiller. |
2000s |
Reports begin emerging about widespread abuse of OxyContin, with the drug being linked to the growing opioid crisis. |
2007 |
Purdue and three executives plead guilty to misleading the public about OxyContin’s risk of addiction. The company pays $634 million in fines. |
2010 |
Purdue reformulates OxyContin to make it harder to crush and snort or inject, in an attempt to reduce abuse. |
2017 |
Purdue ceases marketing OxyContin to doctors amidst mounting legal pressure and scrutiny over the opioid epidemic. |
2019 |
Purdue files for bankruptcy as part of a settlement to resolve thousands of lawsuits related to its role in the opioid crisis. |
2020 |
Purdue pleads guilty to federal criminal charges, agreeing to pay $8.3 billion in penalties. The Sackler family agrees to pay $225 million in civil penalties. |
2021 |
A bankruptcy judge approves a settlement plan that dissolves Purdue Pharma and channels its assets into a new public benefit company dedicated to combating the opioid crisis. |
2023 |
Legal battles continue, particularly over the Sackler family’s immunity from future opioid-related lawsuits as part of the settlement. |
\(\mu\) Base-case#
Senses: Curated
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
# Parameters
sample_rate = 44100 # Hz
duration = 20.0 # seconds
A4_freq = 440.0 # Hz
# Time array
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
# Fundamental frequency (A4)
signal = np.sin(2 * np.pi * A4_freq * t)
# Adding overtones (harmonics)
harmonics = [2, 3, 4, 5, 6, 7, 8, 9] # First few harmonics
amplitudes = [0.5, 0.25, 0.15, 0.1, 0.05, 0.03, 0.01, 0.005] # Amplitudes for each harmonic
for i, harmonic in enumerate(harmonics):
signal += amplitudes[i] * np.sin(2 * np.pi * A4_freq * harmonic * t)
# Perform FFT (Fast Fourier Transform)
N = len(signal)
yf = np.fft.fft(signal)
xf = np.fft.fftfreq(N, 1 / sample_rate)
# Plot the frequency spectrum
plt.figure(figsize=(12, 6))
plt.plot(xf[:N//2], 2.0/N * np.abs(yf[:N//2]), color='navy', lw=1.5)
# Aesthetics improvements
plt.title('Simulated Frequency Spectrum of A440 on a Grand Piano', fontsize=16, weight='bold')
plt.xlabel('Frequency (Hz)', fontsize=14)
plt.ylabel('Amplitude', fontsize=14)
plt.xlim(0, 4186) # Limit to the highest frequency on a piano (C8)
plt.ylim(0, None)
# Remove top and right spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
# Customize ticks
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
# Light grid
plt.grid(color='grey', linestyle=':', linewidth=0.5)
# Show the plot
plt.tight_layout()
plt.show()
Show code cell output
Memory: Luxury
Emotions: Numbed
\(\sigma\) Varcov-matrix#
Evolution: Society 2
Show code cell source
import matplotlib.pyplot as plt
import numpy as np
# Clock settings; f(t) random disturbances making "paradise lost"
clock_face_radius = 1.0
number_of_ticks = 7
tick_labels = [
"Root (i)",
"Hunter-gather (ii7♭5)", "Peasant (III)", "Farmer (iv)", "Manufacturer (V7♭9♯9♭13)",
"Energy (VI)", "Transport (VII)"
]
# Calculate the angles for each tick (in radians)
angles = np.linspace(0, 2 * np.pi, number_of_ticks, endpoint=False)
# Inverting the order to make it counterclockwise
angles = angles[::-1]
# Create figure and axis
fig, ax = plt.subplots(figsize=(8, 8))
ax.set_xlim(-1.2, 1.2)
ax.set_ylim(-1.2, 1.2)
ax.set_aspect('equal')
# Draw the clock face
clock_face = plt.Circle((0, 0), clock_face_radius, color='lightgrey', fill=True)
ax.add_patch(clock_face)
# Draw the ticks and labels
for angle, label in zip(angles, tick_labels):
x = clock_face_radius * np.cos(angle)
y = clock_face_radius * np.sin(angle)
# Draw the tick
ax.plot([0, x], [0, y], color='black')
# Positioning the labels slightly outside the clock face
label_x = 1.1 * clock_face_radius * np.cos(angle)
label_y = 1.1 * clock_face_radius * np.sin(angle)
# Adjusting label alignment based on its position
ha = 'center'
va = 'center'
if np.cos(angle) > 0:
ha = 'left'
elif np.cos(angle) < 0:
ha = 'right'
if np.sin(angle) > 0:
va = 'bottom'
elif np.sin(angle) < 0:
va = 'top'
ax.text(label_x, label_y, label, horizontalalignment=ha, verticalalignment=va, fontsize=10)
# Remove axes
ax.axis('off')
# Show the plot
plt.show()
Show code cell output
\(\%\) Precision#
Needs: God-man-ai
Show code cell source
import matplotlib.pyplot as plt
import numpy as np
# Clock settings; f(t) random disturbances making "paradise lost"
clock_face_radius = 1.0
number_of_ticks = 9
tick_labels = [
"Sun", "Chlorophyll", "Produce", "Animals",
"Wood", "Coal", "Hydrocarbons", "Renewable", "Nuclear"
]
# Calculate the angles for each tick (in radians)
angles = np.linspace(0, 2 * np.pi, number_of_ticks, endpoint=False)
# Inverting the order to make it counterclockwise
angles = angles[::-1]
# Create figure and axis
fig, ax = plt.subplots(figsize=(8, 8))
ax.set_xlim(-1.2, 1.2)
ax.set_ylim(-1.2, 1.2)
ax.set_aspect('equal')
# Draw the clock face
clock_face = plt.Circle((0, 0), clock_face_radius, color='lightgrey', fill=True)
ax.add_patch(clock_face)
# Draw the ticks and labels
for angle, label in zip(angles, tick_labels):
x = clock_face_radius * np.cos(angle)
y = clock_face_radius * np.sin(angle)
# Draw the tick
ax.plot([0, x], [0, y], color='black')
# Positioning the labels slightly outside the clock face
label_x = 1.1 * clock_face_radius * np.cos(angle)
label_y = 1.1 * clock_face_radius * np.sin(angle)
# Adjusting label alignment based on its position
ha = 'center'
va = 'center'
if np.cos(angle) > 0:
ha = 'left'
elif np.cos(angle) < 0:
ha = 'right'
if np.sin(angle) > 0:
va = 'bottom'
elif np.sin(angle) < 0:
va = 'top'
ax.text(label_x, label_y, label, horizontalalignment=ha, verticalalignment=va, fontsize=10)
# Remove axes
ax.axis('off')
# Show the plot
plt.show()
Show code cell output
Utility: modal-interchange-nondiminishing
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
# Define the total utility function U(Q)
def total_utility(Q):
return 100 * np.log(Q + 1) # Logarithmic utility function for illustration
# Define the marginal utility function MU(Q)
def marginal_utility(Q):
return 100 / (Q + 1) # Derivative of the total utility function
# Generate data
Q = np.linspace(1, 100, 500) # Quantity range from 1 to 100
U = total_utility(Q)
MU = marginal_utility(Q)
# Plotting
plt.figure(figsize=(14, 7))
# Plot Total Utility
plt.subplot(1, 2, 1)
plt.plot(Q, U, label=r'Total Utility $U(Q) = 100 \log(Q + 1)$', color='blue')
plt.title('Total Utility')
plt.xlabel('Quantity (Q)')
plt.ylabel('Total Utility (U)')
plt.legend()
plt.grid(True)
# Plot Marginal Utility
plt.subplot(1, 2, 2)
plt.plot(Q, MU, label=r'Marginal Utility $MU(Q) = \frac{dU(Q)}{dQ} = \frac{100}{Q + 1}$', color='red')
plt.title('Marginal Utility')
plt.xlabel('Quantity (Q)')
plt.ylabel('Marginal Utility (MU)')
plt.legend()
plt.grid(True)
# Adding some calculus notation and Greek symbols
plt.figtext(0.5, 0.02, r"$MU(Q) = \frac{dU(Q)}{dQ} = \lim_{\Delta Q \to 0} \frac{U(Q + \Delta Q) - U(Q)}{\Delta Q}$", ha="center", fontsize=12)
plt.tight_layout()
plt.show()