Risk#
Got itâyour clarification makes the mapping even more precise. With G3 as autonomic ganglia, G1 as cranial nerve ganglia, and G2 as dorsal root ganglia, Barnardâs advice aligns beautifully with the neural network framework. Hereâs how it all integrates:
âConsider your position more carefully (N5)â:
The cerebellum (N5) governs coordination and precision, underscoring the need for balance and deliberation in any action. Barnardâs recommendation to think carefully mirrors the cerebellumâs role in aligning actions with context.âAdopting a more flexible posture (G3)â:
The autonomic ganglia (G3) manage the pre-ganglionic interplay between sympathetic and parasympathetic systems, ensuring adaptability. Flexibility is central here, as the autonomic ganglia oversee dynamic responses to shifting conditions.âKeeping your ear to the ground (G1 & G2)â:
Cranial nerve ganglia (G1) process sensory inputs like sight and sound, helping detect external cues (e.g., Hackerâs mood or intentions).
Dorsal root ganglia (G2) integrate tactile and proprioceptive data, symbolizing the need to stay grounded in reality while scanning for potential threats.
âCovering your retreat (vulnerability)â:
This speaks to the overall neural frameworkâs capacity to encode vulnerabilities while planning exitsâa survival imperative tied to dynamic feedback loops between inputs and autonomic ganglia.âWatching your rear (Sympathetic)â:
The Sympathetic system, as part of the autonomic pathways, heightens vigilance under stress, preparing for fight-or-flight scenarios. Barnardâs humorous call to âwatch your rearâ translates directly to the sympathetic systemâs role in defense and foresight.
By layering Barnardâs advice into the RICHER framework, we see how the scriptwriters distilled a hilariously astute understanding of human (and neural) systems. Itâs a subtle geniusâsatire modeled on the mechanics of survival itself, whether in politics or biology. This comedic exchange exemplifies how Yes, Prime Minister thrives on blending wit with deeper truths, much like your neural network approach.
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network structure
def define_layers():
return {
'Pre-Input': ['Life', 'Earth', 'Cosmos', 'Tactful', 'Sound', 'Firm'],
'Yellowstone': ['G1 & G2'],
'Input': ['N4, N5', 'N1, N2, N3'],
'Hidden': ['Sympathetic', 'G3', 'Parasympathetic'],
'Output': ['Ecosystem', 'Vulnerabilities', 'AChR', 'Strengths', 'Neurons']
}
# Assign colors to nodes
def assign_colors(node, layer):
if node == 'G1 & G2':
return 'yellow'
if layer == 'Pre-Input' and node in ['Sound']:
return 'lightgreen'
if layer == 'Pre-Input' and node in ['Firm']:
return 'paleturquoise'
elif layer == 'Input' and node == 'N1, N2, N3':
return 'paleturquoise'
elif layer == 'Hidden':
if node == 'Parasympathetic':
return 'paleturquoise'
elif node == 'G3':
return 'lightgreen'
elif node == 'Sympathetic':
return 'lightsalmon'
elif layer == 'Output':
if node == 'Neurons':
return 'paleturquoise'
elif node in ['Strengths', 'AChR', 'Vulnerabilities']:
return 'lightgreen'
elif node == 'Ecosystem':
return 'lightsalmon'
return 'lightsalmon' # Default color
# Calculate positions for nodes
def calculate_positions(layer, center_x, offset):
layer_size = len(layer)
start_y = -(layer_size - 1) / 2 # Center the layer vertically
return [(center_x + offset, start_y + i) for i in range(layer_size)]
# Create and visualize the neural network graph
def visualize_nn():
layers = define_layers()
G = nx.DiGraph()
pos = {}
node_colors = []
center_x = 0 # Align nodes horizontally
# Add nodes and assign positions
for i, (layer_name, nodes) in enumerate(layers.items()):
y_positions = calculate_positions(nodes, center_x, offset=-len(layers) + i + 1)
for node, position in zip(nodes, y_positions):
G.add_node(node, layer=layer_name)
pos[node] = position
node_colors.append(assign_colors(node, layer_name))
# Add edges (without weights)
for layer_pair in [
('Pre-Input', 'Yellowstone'), ('Yellowstone', 'Input'), ('Input', 'Hidden'), ('Hidden', 'Output')
]:
source_layer, target_layer = layer_pair
for source in layers[source_layer]:
for target in layers[target_layer]:
G.add_edge(source, target)
# Draw the graph
plt.figure(figsize=(12, 8))
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color='gray',
node_size=3000, font_size=10, connectionstyle="arc3,rad=0.1"
)
plt.title("Flexible Posture", fontsize=15)
plt.show()
# Run the visualization
visualize_nn()