Stable

Stable#

act3/figures/blanche.*

Fig. 40 There’s a demand for improvement, a supply of product, and agents keeping costs down through it all. However, when product-supply is manipulated to fix a price, its no different from a mob-boss fixing a fight by asking the fighter to tank. This was a fork in the road for human civilization. Our dear planet earth now becomes just but an optional resource on which we jostle for resources. By expanding to Mars, the jostle reduces for perhaps a couple of centuries of millenia. There need to be things that inspire you. Things that make you glad to wake up in the morning and say “I’m looking forward to the future.” And until then, we have gym and coffee – or perhaps gin & juice. We are going to have a golden age. One of the American values that I love is optimism. We are going to make the future good.#

Hide code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

# Define the neural network fractal
def define_layers():
    return {
        'World': ['Cosmos-Entropy', 'World-Tempered', 'Ucubona-Needs', 'Ecosystem-Costs', 'Space-Trial & Error', 'Time-Cadence', ], # Veni; 95/5
        'Mode': ['Ucubona-Mode'], # Vidi; 80/20
        'Agent': ['Oblivion-Unknown', 'Brand-Trusted'], # Vici; Veni; 51/49
        'Space': ['Ratio-Weaponized', 'Competition-Tokenized', 'Odds-Monopolized'], # Vidi; 20/80
        'Time': ['Volatile-Transvaluation', 'Unveiled-Resentment',  'Freedom-Dance in Chains', 'Exuberant-Jubilee', 'Stable-Victorian'] # Vici; 5/95
    }

# Assign colors to nodes
def assign_colors():
    color_map = {
        'yellow': ['Ucubona-Mode'],  
        'paleturquoise': ['Time-Cadence', 'Brand-Trusted', 'Odds-Monopolized', 'Stable-Victorian'],  
        'lightgreen': ['Space-Trial & Error', 'Competition-Tokenized', 'Exuberant-Jubilee', 'Freedom-Dance in Chains', 'Unveiled-Resentment'],  
        'lightsalmon': [
            'Ucubona-Needs', 'Ecosystem-Costs', 'Oblivion-Unknown',  
            'Ratio-Weaponized', 'Volatile-Transvaluation'
        ],
    }
    return {node: color for color, nodes in color_map.items() for node in nodes}

# Calculate positions for nodes
def calculate_positions(layer, x_offset):
    y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
    return [(x_offset, y) for y in y_positions]

# Create and visualize the neural network graph
def visualize_nn():
    layers = define_layers()
    colors = assign_colors()
    G = nx.DiGraph()
    pos = {}
    node_colors = []

    # Add nodes and assign positions
    for i, (layer_name, nodes) in enumerate(layers.items()):
        positions = calculate_positions(nodes, x_offset=i * 2)
        for node, position in zip(nodes, positions):
            G.add_node(node, layer=layer_name)
            pos[node] = position
            node_colors.append(colors.get(node, 'lightgray'))   

    # Add edges (automated for consecutive layers)
    layer_names = list(layers.keys())
    for i in range(len(layer_names) - 1):
        source_layer, target_layer = layer_names[i], layer_names[i + 1]
        for source in layers[source_layer]:
            for target in layers[target_layer]:
                G.add_edge(source, target)

    # Draw the graph
    plt.figure(figsize=(12, 8))
    nx.draw(
        G, pos, with_labels=True, node_color=node_colors, edge_color='gray',
        node_size=3000, font_size=9, connectionstyle="arc3,rad=0.2"
    )
    plt.title("Veni, Vidi, Vici", fontsize=15)
    plt.show()

# Run the visualization
visualize_nn()
../../_images/fe43dcdf428d40c7f709b261f68da64336ce5fa3920052da7f7e8905cefc4c2e.png
../../_images/blanche.png

Fig. 41 Icarus represents a rapid, elegant escape from the labyrinth by transcending into the third dimension—a brilliant shortcut past the father’s meticulous, earthbound craftsmanship. Daedalus, the master architect, constructs a tortuous, enclosed structure that forces problem-solving along a constrained plane. Icarus, impatient, bypasses the entire system, opting for flight: the most immediate and efficient exit. But that’s precisely where the tragedy lies—his solution works too well, so well that he doesn’t respect its limits. The sun, often emphasized as the moralistic warning, is really just a reminder that even the most beautiful, radical solutions have constraints. Icarus doesn’t just escape; he ascends. But in doing so, he loses the ability to iterate, to adjust dynamically. His shortcut is both his liberation and his doom. The real irony? Daedalus, bound to linear problem-solving, actually survives. He flies, but conservatively. Icarus, in contrast, embodies the hubris of absolute success—skipping all iterative safeguards, assuming pure ascent is sustainable. It’s a compressed metaphor for overclocking intelligence, innovation, or even ambition without recognizing feedback loops. If you outpace the system too fast, you risk breaking the very structure that makes survival possible. It’s less about the sun and more about respecting the transition phase between escape and mastery.#