Stable#
You, from crimes
Art, to enchant
Relieved, by prayer
Spirits, to enforce
Ending, in despair
β Prospero

CG-BEST represents our Dionysian bequethal.

Dionysus as chaotic energy (static), Athena as the filtering force (temperament), and Apollo shaping the resulting harmony (jazz). Source: DALL-E
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the relabeled network layers with tattoo-world labels
def define_layers():
return {
'Initiation': ['First Ink', 'Street Symbols', 'Gang Affiliation', 'Prison Time', "Underworld Rank", 'Elite Criminal Status'],
'Recognition': ['Tattoo Codekeepers'],
'Authority': ['Hitman Mark', 'Kingpin Insignia'],
'Regulation': ['Betrayal Marks', 'Excommunication Symbols', 'Loyalty Seals', ],
"Execution": ['Death Mark', 'Blood Oath', 'Punishment Tally', 'Ritual Branding', 'Legacy Inscriptions']
}
# Assign colors to nodes
def assign_colors():
color_map = {
'yellow': ['Tattoo Codekeepers'],
'paleturquoise': ['Elite Criminal Status', 'Kingpin Insignia', 'Loyalty Seals', 'Legacy Inscriptions'],
'lightgreen': ["Underworld Rank", 'Excommunication Symbols', 'Blood Oath', 'Ritual Branding', 'Punishment Tally'],
'lightsalmon': ['Gang Affiliation', 'Prison Time', 'Hitman Mark', 'Betrayal Marks', 'Death Mark'],
}
return {node: color for color, nodes in color_map.items() for node in nodes}
# Define edge weights
def define_edges():
return {
('First Ink', 'Tattoo Codekeepers'): '1/99',
('Street Symbols', 'Tattoo Codekeepers'): '5/95',
('Gang Affiliation', 'Tattoo Codekeepers'): '20/80',
('Prison Time', 'Tattoo Codekeepers'): '51/49',
("Underworld Rank", 'Tattoo Codekeepers'): '80/20',
('Elite Criminal Status', 'Tattoo Codekeepers'): '95/5',
('Tattoo Codekeepers', 'Hitman Mark'): '20/80',
('Tattoo Codekeepers', 'Kingpin Insignia'): '80/20',
('Hitman Mark', 'Betrayal Marks'): '49/51',
('Hitman Mark', 'Excommunication Symbols'): '80/20',
('Hitman Mark', 'Loyalty Seals'): '95/5',
('Kingpin Insignia', 'Betrayal Marks'): '5/95',
('Kingpin Insignia', 'Excommunication Symbols'): '20/80',
('Kingpin Insignia', 'Loyalty Seals'): '51/49',
('Betrayal Marks', 'Death Mark'): '80/20',
('Betrayal Marks', 'Blood Oath'): '85/15',
('Betrayal Marks', 'Punishment Tally'): '90/10',
('Betrayal Marks', 'Ritual Branding'): '95/5',
('Betrayal Marks', 'Legacy Inscriptions'): '99/1',
('Excommunication Symbols', 'Death Mark'): '1/9',
('Excommunication Symbols', 'Blood Oath'): '1/8',
('Excommunication Symbols', 'Punishment Tally'): '1/7',
('Excommunication Symbols', 'Ritual Branding'): '1/6',
('Excommunication Symbols', 'Legacy Inscriptions'): '1/5',
('Loyalty Seals', 'Death Mark'): '1/99',
('Loyalty Seals', 'Blood Oath'): '5/95',
('Loyalty Seals', 'Punishment Tally'): '10/90',
('Loyalty Seals', 'Ritual Branding'): '15/85',
('Loyalty Seals', 'Legacy Inscriptions'): '20/80'
}
# Define edges to be highlighted in black
def define_black_edges():
return {
('First Ink', 'Tattoo Codekeepers'): '1/99',
('Street Symbols', 'Tattoo Codekeepers'): '5/95',
}
# Calculate node positions
def calculate_positions(layer, x_offset):
y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
return [(x_offset, y) for y in y_positions]
# Create and visualize the neural network graph
def visualize_nn():
layers = define_layers()
colors = assign_colors()
edges = define_edges()
black_edges = define_black_edges()
G = nx.DiGraph()
pos = {}
node_colors = []
# Create mapping from original node names to numbered labels
mapping = {}
counter = 1
for layer in layers.values():
for node in layer:
mapping[node] = f"{counter}. {node}"
counter += 1
# Add nodes with new numbered labels and assign positions
for i, (layer_name, nodes) in enumerate(layers.items()):
positions = calculate_positions(nodes, x_offset=i * 2)
for node, position in zip(nodes, positions):
new_node = mapping[node]
G.add_node(new_node, layer=layer_name)
pos[new_node] = position
node_colors.append(colors.get(node, 'lightgray'))
# Add edges with updated node labels
edge_colors = []
for (source, target), weight in edges.items():
if source in mapping and target in mapping:
new_source = mapping[source]
new_target = mapping[target]
G.add_edge(new_source, new_target, weight=weight)
edge_colors.append('black' if (source, target) in black_edges else 'lightgrey')
# Draw the graph
plt.figure(figsize=(12, 8))
edges_labels = {(u, v): d["weight"] for u, v, d in G.edges(data=True)}
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color=edge_colors,
node_size=3000, font_size=9, connectionstyle="arc3,rad=0.2"
)
nx.draw_networkx_edge_labels(G, pos, edge_labels=edges_labels, font_size=8)
plt.title("OPRAHβ’: Criminal Ink Network: Ukubona Ubuntu", fontsize=18)
plt.show()
# Run the visualization
visualize_nn()

Fig. 28 Sea, Ship, Nonself, Identity Negotiation, Island. Our neatest narrative yet!#
I elect to be optimistic. I'd rather be wrong than choose pessimism. That sea of nihilism is too much to bearw
β Elon Musk