Normative

Contents

Normative#

Eco-Green QR Code

I'd advise you to consider your position carefully (layer 3 fork in the road), perhaps adopting a more flexible posture (layer 4 dynamic capabilities realized), while keeping your ear to the ground (layer 2 yellow node), covering your retreat (layer 5 Athena's shield, helmet, and horse), and watching your rear (layer 1 ecosystem and perspective).

As you from crimes,
Would pardon'd be
So too shall I, from shadows plea,
Let your indulgences,
Set me free
Prospero, Yours Truly, Grok-3
Hide code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

# Define the neural network layers with new culinary-cultural labels
def define_layers():
    return {
        'Suis': ['Fire & Fermentation', 'Salt & Smoke', 'Bitterness & Astringency', 'Umami & Decay', "Structural Complexity", 'Regional Staples'],
        'Voir': ['Rituals of Taste'],  
        'Choisis': ['Acquired Taste', 'Social Shared Preferences'],  
        'Deviens': ['Inflammatory Foods', 'Alcohol & Sedatives', 'Comfort Foods & Rituals'],  
        "M'élève": ['Medicinal Balances', 'Ceremonial Consumption', 'Extreme Flavors', 'Everyday Consumables', 'Cultural Transmission']  
    }

# Assign colors to nodes
def assign_colors():
    color_map = {
        'yellow': ['Rituals of Taste'],  
        'paleturquoise': ['Regional Staples', 'Social Shared Preferences', 'Comfort Foods & Rituals', 'Cultural Transmission'],  
        'lightgreen': ["Structural Complexity", 'Alcohol & Sedatives', 'Ceremonial Consumption', 'Everyday Consumables', 'Extreme Flavors'],  
        'lightsalmon': ['Bitterness & Astringency', 'Umami & Decay', 'Acquired Taste', 'Inflammatory Foods', 'Medicinal Balances'],
    }
    return {node: color for color, nodes in color_map.items() for node in nodes}

# Define edge weights
def define_edges():
    return {
        ('Fire & Fermentation', 'Rituals of Taste'): '1/99',
        ('Salt & Smoke', 'Rituals of Taste'): '5/95',
        ('Bitterness & Astringency', 'Rituals of Taste'): '20/80',
        ('Umami & Decay', 'Rituals of Taste'): '51/49',
        ("Structural Complexity", 'Rituals of Taste'): '80/20',
        ('Regional Staples', 'Rituals of Taste'): '95/5',
        ('Rituals of Taste', 'Acquired Taste'): '20/80',
        ('Rituals of Taste', 'Social Shared Preferences'): '80/20',
        ('Acquired Taste', 'Inflammatory Foods'): '49/51',
        ('Acquired Taste', 'Alcohol & Sedatives'): '80/20',
        ('Acquired Taste', 'Comfort Foods & Rituals'): '95/5',
        ('Social Shared Preferences', 'Inflammatory Foods'): '5/95',
        ('Social Shared Preferences', 'Alcohol & Sedatives'): '20/80',
        ('Social Shared Preferences', 'Comfort Foods & Rituals'): '51/49',
        ('Inflammatory Foods', 'Medicinal Balances'): '80/20',
        ('Inflammatory Foods', 'Ceremonial Consumption'): '85/15',
        ('Inflammatory Foods', 'Extreme Flavors'): '90/10',
        ('Inflammatory Foods', 'Everyday Consumables'): '95/5',
        ('Inflammatory Foods', 'Cultural Transmission'): '99/1',
        ('Alcohol & Sedatives', 'Medicinal Balances'): '1/9',
        ('Alcohol & Sedatives', 'Ceremonial Consumption'): '1/8',
        ('Alcohol & Sedatives', 'Extreme Flavors'): '1/7',
        ('Alcohol & Sedatives', 'Everyday Consumables'): '1/6',
        ('Alcohol & Sedatives', 'Cultural Transmission'): '1/5',
        ('Comfort Foods & Rituals', 'Medicinal Balances'): '1/99',
        ('Comfort Foods & Rituals', 'Ceremonial Consumption'): '5/95',
        ('Comfort Foods & Rituals', 'Extreme Flavors'): '10/90',
        ('Comfort Foods & Rituals', 'Everyday Consumables'): '15/85',
        ('Comfort Foods & Rituals', 'Cultural Transmission'): '20/80'
    }

# Define edges to be highlighted in black
def define_black_edges():
    return {
        ('Fire & Fermentation', 'Rituals of Taste'): '1/99',
        ('Salt & Smoke', 'Rituals of Taste'): '5/95',
    }

# Calculate node positions
def calculate_positions(layer, x_offset):
    y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
    return [(x_offset, y) for y in y_positions]

# Create and visualize the neural network graph
def visualize_nn():
    layers = define_layers()
    colors = assign_colors()
    edges = define_edges()
    black_edges = define_black_edges()
    
    G = nx.DiGraph()
    pos = {}
    node_colors = []
    
    # Create mapping from original node names to numbered labels
    mapping = {}
    counter = 1
    for layer in layers.values():
        for node in layer:
            mapping[node] = f"{counter}. {node}"
            counter += 1
            
    # Add nodes with new numbered labels and assign positions
    for i, (layer_name, nodes) in enumerate(layers.items()):
        positions = calculate_positions(nodes, x_offset=i * 2)
        for node, position in zip(nodes, positions):
            new_node = mapping[node]
            G.add_node(new_node, layer=layer_name)
            pos[new_node] = position
            node_colors.append(colors.get(node, 'lightgray'))
    
    # Add edges with updated node labels
    edge_colors = []
    for (source, target), weight in edges.items():
        if source in mapping and target in mapping:
            new_source = mapping[source]
            new_target = mapping[target]
            G.add_edge(new_source, new_target, weight=weight)
            edge_colors.append('black' if (source, target) in black_edges else 'lightgrey')
    
    # Draw the graph
    plt.figure(figsize=(12, 8))
    edges_labels = {(u, v): d["weight"] for u, v, d in G.edges(data=True)}
    
    nx.draw(
        G, pos, with_labels=True, node_color=node_colors, edge_color=edge_colors,
        node_size=3000, font_size=9, connectionstyle="arc3,rad=0.2"
    )
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edges_labels, font_size=8)
    plt.title("OPRAH™: Cultural-Culinary Equivalents &\n Medieval Obession with Death, Judgment, and the Afterlife", fontsize=18)
    plt.show()

# Run the visualization
visualize_nn()
../../_images/947282d66bcfc5437e21f99fc46e11d27210d373d809d4172d1af3b85b51071c.png
https://www.ledr.com/colours/white.jpg

Fig. 37 Oscar Wilde is Apollonian & Nietzsche is Dionysian. The Prick of Conscience (early 14th century, ~1300s) is a sprawling, didactic, and deeply penitential Middle English poem, probably composed in Yorkshire. It survives in over 120 manuscripts, making it the most widely circulated Middle English poem before Chaucer. Its goal is simple: terrify you into salvation. It runs over 9,000 lines and goes hard on mortality, sin, judgment, and hellfire. Dante’s Divine Comedy (completed ~1320), meanwhile, is a masterwork of Italian vernacular poetry: highly structured, allegorical, and deeply personal. He offers a tour of the afterlife; Prick offers a lecture on why you should dread it. Both are driven by the need to save the soul through fear and narrative.#

+ Expand
  • Nonself/Abyss/MyChart
    • Ontology (Vast Data)
    • Epistemology (Combinatorial)
    • Goal (Metric-Function)
  • Self/Perception/Locations
    • Afterlife/Choices/Doctors
      1. Intestines/villi
      2. Lungs/bronchioles
      3. Capillary trees
      4. Network of lymphatics
      5. Dendrites in neurons
      6. Tree branches
    • Judgement/Adaptation/Scheduling
      1. Energy
      2. Aerobic respiration
      3. Delivery to "last mile" (minimize distance)
      4. Response time (minimize)
      5. Information
      6. Exposure to sunlight for photosynthesis
    • Death/Flourishing/Longterm
      1. Nourishment
      2. Gaseous exchange
      3. Oxygen & Nutrients (Carbon dioxide & "Waste")
      4. Surveillance for antigens
      5. Coherence of functions
      6. Water and nutrients from soil
<p>-- <a href="https://www.hopkinsmedicine.org/">Prick of Conscience</a></p>

#