Resource#
These trivial matters—diet, locality, climate, and one’s mode of recreation, the whole casuistry of self-love—are inconceivably more important than, all that which has hitherto been held in high esteem!
– Why I am so clever, Ecce Homo
Show code cell source
import networkx as nx
import matplotlib.pyplot as plt
# Define layers for the input (compression) phase
input_layers = {
"Biology": ['Bird', 'Life', 'Earth', 'Cosmos'],
"Recreation and External Factors": ['Recreation', 'Nutrients', 'eLigands', 'Photons', 'Magnetic Fields'],
"Ligands & Receptors": ['Noradrenaline', 'Dopamine', 'ipGC', 'Cytokines'],
"Pathways": ['SCN', 'Hypothalamus', 'Glutamate'],
"Cells": ['Melatonin', 'Endorphins', 'Oxytocin', 'Stem Cells'],
"Tissues": ['GABA', 'Adenosine', 'Acetylcholine', 'Serotonin'],
"Systems": [ 'Cypochromes', 'Lymphatic'],
"Immuno-Neuro-Endocrinology": ['Cytokines', 'Neurohormones', 'Endocrine Feedback'],
"Molecular Biology": ['DNA', 'RNA', 'Proteins', 'Lipids'],
"Omics": ['Genomics', 'Proteomics', 'Metabolomics', 'Epigenomics', 'Transcriptomics'],
"Quantum": ['Energy', 'Particles', 'Spin', 'Wave Functions']
}
# Define layers for the output (decompression) phase
output_layers = {
"Molecular Outputs": ['Electron Transfer', 'Molecular Stability', 'Reaction Dynamics'],
"Cellular Behavior": ['ATP Production', 'Membrane Potential', 'DNA Repair', 'Protein Synthesis'],
"Tissue-Level Dynamics": ['Neural Activity', 'Muscle Contraction', 'Immune Responses'],
"Organ Systems": ['Cardiovascular', 'Immune', 'Nervous', 'Endocrine'],
"Physiological States": ['Homeostasis', 'Stress Response', 'Energy Balance', 'Neuroendocrine Feedback'],
"Behavioral and Psychological Outcomes": ['Cognitive Function', 'Emotional States', 'Behavioral Outputs'],
"Sociological and Environmental Interactions": ['Social Structures', 'Environmental Interactions', 'Sociological Outputs'],
"Functional Health Outcomes": ['Longevity', 'Disease Risk', 'Quality of Life', 'Functional Fitness', 'Migration']
}
# Merge input and output layers
full_layers = {**input_layers, **output_layers}
# Initialize the graph
G_full_biology = nx.DiGraph()
# Add nodes for each layer
for layer_name, nodes in full_layers.items():
G_full_biology.add_nodes_from(nodes, layer=layer_name)
# Connect layers sequentially
layer_names = list(full_layers.keys())
for i in range(len(layer_names) - 1):
source_layer = full_layers[layer_names[i]]
target_layer = full_layers[layer_names[i + 1]]
for source_node in source_layer:
for target_node in target_layer:
G_full_biology.add_edge(source_node, target_node)
# Define node positions for visualization (inverted layout)
pos_full_biology = {}
layer_spacing = 2 # Space between layers
node_spacing = 1.5 # Space between nodes within a layer
for i, (layer_name, nodes) in enumerate(full_layers.items()):
y = i * layer_spacing - (len(layer_names) - 1) * layer_spacing / 2 # Inverted vertical alignment
for j, node in enumerate(nodes):
x = j * node_spacing - (len(nodes) - 1) * node_spacing / 2 # Center nodes horizontally within layer
pos_full_biology[node] = (x, y)
# Define specific colors for the Stress Dynamics pathway
highlighted_layers = {
"Physiological States": "lightsalmon",
"Behavioral and Psychological Outcomes": "lightgreen",
"Sociological and Environmental Interactions": "paleturquoise"
}
node_colors = []
for node in G_full_biology.nodes():
for layer_name, color in highlighted_layers.items():
if node in full_layers[layer_name]:
node_colors.append(color)
break
else:
node_colors.append("lightgray")
# Highlight the Stress Pathway
stress_path = [
'Bird', 'Magnetic Fields',
'Earth', 'Magnetic Fields',
'Cypochromes',
'Spin', 'Magnetic Fields',
'Muscle Contraction',
'Behavioral Outputs',
'Sociological Outputs',
'Migration'
]
for i in range(len(stress_path) - 1):
G_full_biology.add_edge(stress_path[i], stress_path[i + 1], weight=5)
edge_widths = []
for u, v in G_full_biology.edges():
if (u, v) in zip(stress_path, stress_path[1:]):
edge_widths.append(3) # Highlighted path
else:
edge_widths.append(0.5)
# Draw the graph
plt.figure(figsize=(14, 30))
nx.draw_networkx_nodes(G_full_biology, pos_full_biology, node_size=3000, node_color=node_colors)
nx.draw_networkx_labels(G_full_biology, pos_full_biology, font_size=10, font_weight="bold")
nx.draw_networkx_edges(G_full_biology, pos_full_biology, width=edge_widths, edge_color="gray")
plt.title("Diet, Locality, Climate, Recreation", fontsize=14)
plt.axis('off')
plt.show()
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network structure
layers = {
'Input': ['Resourcefulness', 'Resources'],
'Hidden': [
'Identity (Self, Family, Community, Tribe)',
'Tokenization/Commodification',
'Adversary Networks (Biological)',
],
'Output': ['Joy', 'Freude', 'Kapital', 'Schaden', 'Ecosystem']
}
# Adjacency matrix defining the weight connections
weights = {
'Input-Hidden': np.array([[0.8, 0.4, 0.1], [0.9, 0.7, 0.2]]),
'Hidden-Output': np.array([
[0.2, 0.8, 0.1, 0.05, 0.2],
[0.1, 0.9, 0.05, 0.05, 0.1],
[0.05, 0.6, 0.2, 0.1, 0.05]
])
}
# Visualizing the Neural Network
def visualize_nn(layers, weights):
G = nx.DiGraph()
pos = {}
node_colors = []
# Add input layer nodes
for i, node in enumerate(layers['Input']):
G.add_node(node, layer=0)
pos[node] = (0, -i)
node_colors.append('lightgray')
# Add hidden layer nodes
for i, node in enumerate(layers['Hidden']):
G.add_node(node, layer=1)
pos[node] = (1, -i)
if node == 'Identity (Self, Family, Community, Tribe)':
node_colors.append('paleturquoise')
elif node == 'Tokenization/Commodification':
node_colors.append('lightgreen')
elif node == 'Adversary Networks (Biological)':
node_colors.append('lightsalmon')
# Add output layer nodes
for i, node in enumerate(layers['Output']):
G.add_node(node, layer=2)
pos[node] = (2, -i)
if node == 'Joy':
node_colors.append('paleturquoise')
elif node in ['Freude', 'Kapital', 'Schaden']:
node_colors.append('lightgreen')
elif node == 'Ecosystem':
node_colors.append('lightsalmon')
# Add edges based on weights
for i, in_node in enumerate(layers['Input']):
for j, hid_node in enumerate(layers['Hidden']):
G.add_edge(in_node, hid_node, weight=weights['Input-Hidden'][i, j])
for i, hid_node in enumerate(layers['Hidden']):
for j, out_node in enumerate(layers['Output']):
# Adjust thickness for specific edges
if hid_node == "Identity (Self, Family, Community, Tribe)" and out_node == "Kapital":
width = 6
elif hid_node == "Tokenization/Commodification" and out_node == "Kapital":
width = 6
elif hid_node == "Adversary Networks (Biological)" and out_node == "Kapital":
width = 6
else:
width = 1
G.add_edge(hid_node, out_node, weight=weights['Hidden-Output'][i, j], width=width)
# Draw the graph
plt.figure(figsize=(12, 8))
edge_labels = nx.get_edge_attributes(G, 'weight')
widths = [G[u][v]['width'] if 'width' in G[u][v] else 1 for u, v in G.edges()]
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color='gray',
node_size=3000, font_size=10, width=widths
)
nx.draw_networkx_edge_labels(G, pos, edge_labels={k: f'{v:.2f}' for k, v in edge_labels.items()})
plt.title("Visualizing Capital Gains Maximization")
plt.show()
visualize_nn(layers, weights)
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network structure
layers = {
'Pre-Input': ['Tact', 'Firmness', 'Soundness', 'Cosmos', 'Earth', 'Life', 'Humanity'],
'Input': ['Resourcefulness', 'Resources'],
'Hidden': [
'Identity (Self, Family, Community, Tribe)',
'Tokenization/Commodification',
'Adversary Networks (Biological)',
],
'Output': ['Joy', 'Freude', 'Kapital', 'Schaden', 'Ecosystem']
}
# Define weights for the connections
weights = {
'Pre-Input-Input': np.array([
[0.6, 0.7],
[0.5, 0.8],
[0.4, 0.6],
[0.3, 0.5],
[0.7, 0.3],
[0.8, 0.2],
[0.6, 0.4]
]),
'Input-Hidden': np.array([[0.8, 0.4, 0.1], [0.9, 0.7, 0.2]]),
'Hidden-Output': np.array([
[0.2, 0.8, 0.1, 0.05, 0.2],
[0.1, 0.9, 0.05, 0.05, 0.1],
[0.05, 0.6, 0.2, 0.1, 0.05]
])
}
# Visualization function
def visualize_nn_center_aligned(layers, weights):
G = nx.DiGraph()
pos = {}
node_colors = []
# Define a fixed x-axis coordinate for alignment
center_x = 0
# Calculate the vertical positions for each node in a layer
def calculate_y_positions(layer):
layer_size = len(layer)
start_y = -(layer_size - 1) / 2 # Center the layer vertically
return [start_y + i for i in range(layer_size)]
# Add pre-input layer nodes
y_positions = calculate_y_positions(layers['Pre-Input'])
for i, node in enumerate(layers['Pre-Input']):
G.add_node(node, layer=-1)
pos[node] = (center_x - 3, y_positions[i]) # Shift x-axis to left
node_colors.append('lightgray')
# Add input layer nodes
y_positions = calculate_y_positions(layers['Input'])
for i, node in enumerate(layers['Input']):
G.add_node(node, layer=0)
pos[node] = (center_x - 2, y_positions[i])
node_colors.append('lightgray')
# Add hidden layer nodes
y_positions = calculate_y_positions(layers['Hidden'])
for i, node in enumerate(layers['Hidden']):
G.add_node(node, layer=1)
pos[node] = (center_x - 1, y_positions[i])
if node == 'Identity (Self, Family, Community, Tribe)':
node_colors.append('paleturquoise')
elif node == 'Tokenization/Commodification':
node_colors.append('lightgreen')
elif node == 'Adversary Networks (Biological)':
node_colors.append('lightsalmon')
# Add output layer nodes
y_positions = calculate_y_positions(layers['Output'])
for i, node in enumerate(layers['Output']):
G.add_node(node, layer=2)
pos[node] = (center_x, y_positions[i])
if node == 'Joy':
node_colors.append('paleturquoise')
elif node in ['Freude', 'Kapital', 'Schaden']:
node_colors.append('lightgreen')
elif node == 'Ecosystem':
node_colors.append('lightsalmon')
# Add edges for Pre-Input to Input
for i, pre_node in enumerate(layers['Pre-Input']):
for j, in_node in enumerate(layers['Input']):
G.add_edge(pre_node, in_node, weight=weights['Pre-Input-Input'][i, j])
# Add edges for Input to Hidden
for i, in_node in enumerate(layers['Input']):
for j, hid_node in enumerate(layers['Hidden']):
G.add_edge(in_node, hid_node, weight=weights['Input-Hidden'][i, j])
# Add edges for Hidden to Output
for i, hid_node in enumerate(layers['Hidden']):
for j, out_node in enumerate(layers['Output']):
# Adjust thickness for specific edges
if hid_node == "Identity (Self, Family, Community, Tribe)" and out_node == "Kapital":
width = 6
elif hid_node == "Tokenization/Commodification" and out_node == "Kapital":
width = 6
elif hid_node == "Adversary Networks (Biological)" and out_node == "Kapital":
width = 6
else:
width = 1
G.add_edge(hid_node, out_node, weight=weights['Hidden-Output'][i, j], width=width)
# Draw the graph
plt.figure(figsize=(10, 14))
edge_labels = nx.get_edge_attributes(G, 'weight')
widths = [G[u][v]['width'] if 'width' in G[u][v] else 1 for u, v in G.edges()]
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color='gray',
node_size=3000, font_size=10, width=widths
)
nx.draw_networkx_edge_labels(G, pos, edge_labels={k: f'{v:.2f}' for k, v in edge_labels.items()})
plt.title("Center-Aligned Neural Network Visualization")
plt.show()
visualize_nn_center_aligned(layers, weights)