Risk

Risk#

Hide code cell source
import networkx as nx
import matplotlib.pyplot as plt

# Define input nodes, including specific neural effects of White Russian components
input_nodes_patient = [
    'Oxytocin', 'Serotonin', 'Progesterone', 'Estrogen', 'Adenosine', 'Magnesium', 'Phonetics', 'Temperament',
    'Degree', 'Scale', 'ATP', 'NAD+', 'Glutathion', 'Glutamate', 'GABA', 'Endorphin', 'Qualities',
    'Extensions', 'Alterations', 'Dopamine', 'Caffeine', 'Testosterone', 'Noradrenaline', 'Adrenaline', 'Cortisol',
    'Time', 'Military', 'Cadence', 'Pockets'
]

# Define hidden layer nodes as archetypal latent space with distinct archetypes
hidden_layer_labels_patient = [
    'Elevation (Uplift)', 'Approbation (Validation)', 'Castration (Limitation)'
]

# Define output nodes for linear social validation hierarchy
output_nodes_patient = [
    'Health', 'Family', 'Community', 'Local', 'Regional', 'NexToken', 'National', 'Global', 'Interstellar'
]

# Initialize graph
G_patient = nx.DiGraph()

# Add all nodes to the graph
G_patient.add_nodes_from(input_nodes_patient, layer='input')
G_patient.add_nodes_from(hidden_layer_labels_patient, layer='hidden')
G_patient.add_nodes_from(output_nodes_patient, layer='output')

# Define key narrative pathways (thickened edges)
thick_edges_patient = [
    # Pathways emphasizing Elevation (Uplift)
    ('GABA', 'Elevation (Uplift)'),  # Alcohol acting on GABA: relaxation, inhibition
    ('Adenosine', 'Elevation (Uplift)'),  # Caffeine modulation of adenosine: alertness
    ('Oxytocin', 'Elevation (Uplift)'),  # Social bonding, closeness
    ('Endorphin', 'Elevation (Uplift)'),  # Shared humor and pleasure
    ('ATP', 'Elevation (Uplift)'),  # Cream as an energy source

    # Pathways emphasizing Approbation (Validation)
    ('Dopamine', 'Approbation (Validation)'),  # Dopamine's role in reward-seeking and tokenization
    ('Caffeine', 'Approbation (Validation)'),  ('Approbation (Validation)', 'NexToken'),  # Drive for focus and achievement

    # Pathways emphasizing Castration (Limitation)
    ('Testosterone', 'Castration (Limitation)'),  # Symbolic castration as masculinity diminished or questioned
    ('Cortisol', 'Castration (Limitation)'),  # Stress response undercutting resilience
    ('Adrenaline', 'Castration (Limitation)'),  # Fight-or-flight as undermining composure
    ('Time', 'Castration (Limitation)'),  # Limited temporal resources
    ('Military', 'Castration (Limitation)'),  # Rigid hierarchies suppressing individuality
    ('Cadence', 'Castration (Limitation)'),  # Enforced rhythm restricting freedom
    ('Pockets', 'Castration (Limitation)')  # Symbolic lack of resources or containment
]

# Connect all input nodes to hidden layer archetypes
for input_node in input_nodes_patient:
    for hidden_node in hidden_layer_labels_patient:
        G_patient.add_edge(input_node, hidden_node)

# Connect hidden layer archetypes to output nodes
for hidden_node in hidden_layer_labels_patient:
    for output_node in output_nodes_patient:
        G_patient.add_edge(hidden_node, output_node)

# Define layout positions
pos_patient = {}
for i, node in enumerate(input_nodes_patient):
    pos_patient[node] = ((i + 0.5) * 0.25, 0)  # Input nodes at the bottom

for i, node in enumerate(output_nodes_patient):
    pos_patient[node] = ((i + 1.5) * 0.6, 2)  # Output nodes at the top

for i, node in enumerate(hidden_layer_labels_patient):
    pos_patient[node] = ((i + 3) * 1, 1)  # Hidden nodes in the middle layer

# Define color scheme for nodes based on archetypes and White Russian dynamics
node_colors_patient = [
    'paleturquoise' if node in input_nodes_patient[:10] + hidden_layer_labels_patient[:1] + output_nodes_patient[:3] else
    'lightgreen' if node in input_nodes_patient[10:20] + hidden_layer_labels_patient[1:2] + output_nodes_patient[3:6] else
    'lightsalmon' if node in input_nodes_patient[20:] + hidden_layer_labels_patient[2:] + output_nodes_patient[6:] else
    'lightgray'
    for node in G_patient.nodes()
]

# Set edge widths with thickened lines for key narrative pathways
edge_widths_patient = [3 if edge in thick_edges_patient else 0.2 for edge in G_patient.edges()]

# Draw graph with rotated positions, thicker narrative edges, and archetypal colors
plt.figure(figsize=(14, 30))
pos_rotated = {node: (y, -x) for node, (x, y) in pos_patient.items()}

nx.draw(G_patient, pos_rotated, with_labels=True, node_size=3500, node_color=node_colors_patient,
        font_size=9, font_weight='bold', arrows=True, width=edge_widths_patient)

# Add title and remove axes for clean visualization
plt.title("For on His Choice Depends The Sanctity and Health of this Whole State")
plt.axis('off')
plt.show()
../_images/20b190a9d1875b987b314a4f06731f1f6d3c9e19d0357076ad12d2abce32e807.png
../_images/blanche.png

Fig. 5 This updated graph structure integrates the dynamics of dopamine and its alignment with the light green node representing tokenization while preserving the narrative framework. The key adjustments include: 1. Dopamine Highlighting: Dopamine is directly associated with the hidden node “Approbation (Validation),” emphasizing its role in tokenized reward-seeking behavior. 2. Color Coding: The light green archetype is extended to represent dopamine’s influence alongside tokenization, highlighting the narrative that tokenization acts as both a lure and a trap.3. Narrative Edges: Key pathways, such as the connection between dopamine and “Approbation (Validation),” are thickened to emphasize their importance within the network’s broader story. 4. Renamed Nodes: Adjustments in naming ensure alignment with their symbolic roles. For instance:- “Inferno (Weakness)” aligns with output nodes, reinforcing tokenized attempts at transcendence.- Inputs like “Cadence” and “Pockets” reflect symbolic limitations. 5. Graph Visualization: Enhanced layout and node positioning ensure clarity in distinguishing layers and narrative pathways. This framework situates your neural network as an evolving model for exploring the intersection of neurochemical dynamics, archetypal structures, and their real-world manifestations in behaviors like social media engagement or existential navigation. If you’d like further refinement or additional archetypes, let me know!#