import networkx as nx
import matplotlib.pyplot as plt
# Define input nodes, including specific neural effects of White Russian components
input_nodes_patient = [
'Oxytocin', 'Serotonin', 'Progesterone', 'Estrogen', 'Adenosine', 'Magnesium', 'Phonetics', 'Temperament',
'Degree', 'Scale', 'ATP', 'NAD+', 'Glutathion', 'Glutamate', 'GABA', 'Endorphin', 'Qualities',
'Extensions', 'Alterations', 'Dopamine', 'Caffeine', 'Testosterone', 'Noradrenaline', 'Adrenaline', 'Cortisol',
'Time', 'Military', 'Cadence', 'Pockets'
]
# Define hidden layer nodes as archetypal latent space with distinct archetypes
hidden_layer_labels_patient = [
'Elevation (Uplift)', 'Approbation (Validation)', 'Castration (Limitation)'
]
# Define output nodes for linear social validation hierarchy
output_nodes_patient = [
'Health', 'Family', 'Community', 'Local', 'Regional', 'NexToken', 'National', 'Global', 'Interstellar'
]
# Initialize graph
G_patient = nx.DiGraph()
# Add all nodes to the graph
G_patient.add_nodes_from(input_nodes_patient, layer='input')
G_patient.add_nodes_from(hidden_layer_labels_patient, layer='hidden')
G_patient.add_nodes_from(output_nodes_patient, layer='output')
# Define key narrative pathways (thickened edges)
thick_edges_patient = [
# Pathways emphasizing Elevation (Uplift)
('GABA', 'Elevation (Uplift)'), # Alcohol acting on GABA: relaxation, inhibition
('Adenosine', 'Elevation (Uplift)'), # Caffeine modulation of adenosine: alertness
('Oxytocin', 'Elevation (Uplift)'), # Social bonding, closeness
('Endorphin', 'Elevation (Uplift)'), # Shared humor and pleasure
('ATP', 'Elevation (Uplift)'), # Cream as an energy source
# Pathways emphasizing Approbation (Validation)
('Dopamine', 'Approbation (Validation)'), # Dopamine's role in reward-seeking and tokenization
('Caffeine', 'Approbation (Validation)'), ('Approbation (Validation)', 'NexToken'), # Drive for focus and achievement
# Pathways emphasizing Castration (Limitation)
('Testosterone', 'Castration (Limitation)'), # Symbolic castration as masculinity diminished or questioned
('Cortisol', 'Castration (Limitation)'), # Stress response undercutting resilience
('Adrenaline', 'Castration (Limitation)'), # Fight-or-flight as undermining composure
('Time', 'Castration (Limitation)'), # Limited temporal resources
('Military', 'Castration (Limitation)'), # Rigid hierarchies suppressing individuality
('Cadence', 'Castration (Limitation)'), # Enforced rhythm restricting freedom
('Pockets', 'Castration (Limitation)') # Symbolic lack of resources or containment
]
# Connect all input nodes to hidden layer archetypes
for input_node in input_nodes_patient:
for hidden_node in hidden_layer_labels_patient:
G_patient.add_edge(input_node, hidden_node)
# Connect hidden layer archetypes to output nodes
for hidden_node in hidden_layer_labels_patient:
for output_node in output_nodes_patient:
G_patient.add_edge(hidden_node, output_node)
# Define layout positions
pos_patient = {}
for i, node in enumerate(input_nodes_patient):
pos_patient[node] = ((i + 0.5) * 0.25, 0) # Input nodes at the bottom
for i, node in enumerate(output_nodes_patient):
pos_patient[node] = ((i + 1.5) * 0.6, 2) # Output nodes at the top
for i, node in enumerate(hidden_layer_labels_patient):
pos_patient[node] = ((i + 3) * 1, 1) # Hidden nodes in the middle layer
# Define color scheme for nodes based on archetypes and White Russian dynamics
node_colors_patient = [
'paleturquoise' if node in input_nodes_patient[:10] + hidden_layer_labels_patient[:1] + output_nodes_patient[:3] else
'lightgreen' if node in input_nodes_patient[10:20] + hidden_layer_labels_patient[1:2] + output_nodes_patient[3:6] else
'lightsalmon' if node in input_nodes_patient[20:] + hidden_layer_labels_patient[2:] + output_nodes_patient[6:] else
'lightgray'
for node in G_patient.nodes()
]
# Set edge widths with thickened lines for key narrative pathways
edge_widths_patient = [3 if edge in thick_edges_patient else 0.2 for edge in G_patient.edges()]
# Draw graph with rotated positions, thicker narrative edges, and archetypal colors
plt.figure(figsize=(14, 30))
pos_rotated = {node: (y, -x) for node, (x, y) in pos_patient.items()}
nx.draw(G_patient, pos_rotated, with_labels=True, node_size=3500, node_color=node_colors_patient,
font_size=9, font_weight='bold', arrows=True, width=edge_widths_patient)
# Add title and remove axes for clean visualization
plt.title("For on His Choice Depends The Sanctity and Health of this Whole State")
plt.axis('off')
plt.show()