Prometheus#
+ Expand
- What makes for a suitable problem for AI (Demis Hassabis, Nobel Lecture)?
- Space: Massive combinatorial search space
- Function: Clear objective function (metric) to optimize against
- Time: Either lots of data and/or an accurate and efficient simulator
- Guess what else fits the bill (Yours truly, amateur philosopher)?
- Space
- Intestines/villi
- Lungs/bronchioles
- Capillary trees
- Network of lymphatics
- Dendrites in neurons
- Tree branches
- Function
- Energy
- Aerobic respiration
- Delivery to "last mile" (minimize distance)
- Response time (minimize)
- Information
- Exposure to sunlight for photosynthesis
- Time
- Nourishment
- Gaseous exchange
- Oxygen & Nutrients (Carbon dioxide & "Waste")
- Surveillance for antigens
- Coherence of functions
- Water and nutrients from soil

Fig. 12 King Lear. The senile bequest motive at the outset makes it an endearing classic. but the plot gets messy. what do folks thing about it? Perhaps reality is that messy, with orthogonal plots unfolding to determine the outcome?#

Fig. 13 Dismiss your vows, your feigned tears, your flattāry; For where a heart is hard they make no battāry.ā Source: Venus & Adonis#
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network layers
def define_layers():
return {
'Suis': ['DNA, RNA, 5%', 'Peptidoglycans, Lipoteichoics', 'Lipopolysaccharide', 'N-Formylmethionine', "Glucans, Chitin", 'Specific Antigens'],
'Voir': ['PRR & ILCs, 20%'],
'Choisis': ['CD8+, 50%', 'CD4+'],
'Deviens': ['TNF-α, IL-6, IFN-γ', 'PD-1 & CTLA-4', 'Tregs, IL-10, TGF-β, 20%'],
"M'èléve": ['Complement System', 'Platelet System', 'Granulocyte System', 'Innate Lymphoid Cells, 5%', 'Adaptive Lymphoid Cells']
}
# Assign colors to nodes
def assign_colors():
color_map = {
'yellow': ['PRR & ILCs, 20%'],
'paleturquoise': ['Specific Antigens', 'CD4+', 'Tregs, IL-10, TGF-β, 20%', 'Adaptive Lymphoid Cells'],
'lightgreen': ["Glucans, Chitin", 'PD-1 & CTLA-4', 'Platelet System', 'Innate Lymphoid Cells, 5%', 'Granulocyte System'],
'lightsalmon': ['Lipopolysaccharide', 'N-Formylmethionine', 'CD8+, 50%', 'TNF-α, IL-6, IFN-γ', 'Complement System'],
}
return {node: color for color, nodes in color_map.items() for node in nodes}
# Define edge weights
def define_edges():
return {
('DNA, RNA, 5%', 'PRR & ILCs, 20%'): '1/99',
('Peptidoglycans, Lipoteichoics', 'PRR & ILCs, 20%'): '5/95',
('Lipopolysaccharide', 'PRR & ILCs, 20%'): '20/80',
('N-Formylmethionine', 'PRR & ILCs, 20%'): '51/49',
("Glucans, Chitin", 'PRR & ILCs, 20%'): '80/20',
('Specific Antigens', 'PRR & ILCs, 20%'): '95/5',
('PRR & ILCs, 20%', 'CD8+, 50%'): '20/80',
('PRR & ILCs, 20%', 'CD4+'): '80/20',
('CD8+, 50%', 'TNF-α, IL-6, IFN-γ'): '49/51',
('CD8+, 50%', 'PD-1 & CTLA-4'): '80/20',
('CD8+, 50%', 'Tregs, IL-10, TGF-β, 20%'): '95/5',
('CD4+', 'TNF-α, IL-6, IFN-γ'): '5/95',
('CD4+', 'PD-1 & CTLA-4'): '20/80',
('CD4+', 'Tregs, IL-10, TGF-β, 20%'): '51/49',
('TNF-α, IL-6, IFN-γ', 'Complement System'): '80/20',
('TNF-α, IL-6, IFN-γ', 'Platelet System'): '85/15',
('TNF-α, IL-6, IFN-γ', 'Granulocyte System'): '90/10',
('TNF-α, IL-6, IFN-γ', 'Innate Lymphoid Cells, 5%'): '95/5',
('TNF-α, IL-6, IFN-γ', 'Adaptive Lymphoid Cells'): '99/1',
('PD-1 & CTLA-4', 'Complement System'): '1/9',
('PD-1 & CTLA-4', 'Platelet System'): '1/8',
('PD-1 & CTLA-4', 'Granulocyte System'): '1/7',
('PD-1 & CTLA-4', 'Innate Lymphoid Cells, 5%'): '1/6',
('PD-1 & CTLA-4', 'Adaptive Lymphoid Cells'): '1/5',
('Tregs, IL-10, TGF-β, 20%', 'Complement System'): '1/99',
('Tregs, IL-10, TGF-β, 20%', 'Platelet System'): '5/95',
('Tregs, IL-10, TGF-β, 20%', 'Granulocyte System'): '10/90',
('Tregs, IL-10, TGF-β, 20%', 'Innate Lymphoid Cells, 5%'): '15/85',
('Tregs, IL-10, TGF-β, 20%', 'Adaptive Lymphoid Cells'): '20/80'
}
# Define edges to be highlighted in black
def define_black_edges():
return {
('TNF-α, IL-6, IFN-γ', 'Complement System'): '80/20',
('TNF-α, IL-6, IFN-γ', 'Platelet System'): '85/15',
('TNF-α, IL-6, IFN-γ', 'Granulocyte System'): '90/10',
('TNF-α, IL-6, IFN-γ', 'Innate Lymphoid Cells, 5%'): '95/5',
('TNF-α, IL-6, IFN-γ', 'Adaptive Lymphoid Cells'): '99/1',
('PD-1 & CTLA-4', 'Complement System'): '1/9',
('PD-1 & CTLA-4', 'Platelet System'): '1/8',
('PD-1 & CTLA-4', 'Granulocyte System'): '1/7',
('PD-1 & CTLA-4', 'Innate Lymphoid Cells, 5%'): '1/6',
('PD-1 & CTLA-4', 'Adaptive Lymphoid Cells'): '1/5',
('Tregs, IL-10, TGF-β, 20%', 'Complement System'): '1/99',
('Tregs, IL-10, TGF-β, 20%', 'Platelet System'): '5/95',
('Tregs, IL-10, TGF-β, 20%', 'Granulocyte System'): '10/90',
('Tregs, IL-10, TGF-β, 20%', 'Innate Lymphoid Cells, 5%'): '15/85',
('Tregs, IL-10, TGF-β, 20%', 'Adaptive Lymphoid Cells'): '20/80'
}
# Calculate node positions
def calculate_positions(layer, x_offset):
y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
return [(x_offset, y) for y in y_positions]
# Create and visualize the neural network graph
def visualize_nn():
layers = define_layers()
colors = assign_colors()
edges = define_edges()
black_edges = define_black_edges()
G = nx.DiGraph()
pos = {}
node_colors = []
# Create mapping from original node names to numbered labels
mapping = {}
counter = 1
for layer in layers.values():
for node in layer:
mapping[node] = f"{counter}. {node}"
counter += 1
# Add nodes with new numbered labels and assign positions
for i, (layer_name, nodes) in enumerate(layers.items()):
positions = calculate_positions(nodes, x_offset=i * 2)
for node, position in zip(nodes, positions):
new_node = mapping[node]
G.add_node(new_node, layer=layer_name)
pos[new_node] = position
node_colors.append(colors.get(node, 'lightgray'))
# Add edges with updated node labels
edge_colors = []
for (source, target), weight in edges.items():
if source in mapping and target in mapping:
new_source = mapping[source]
new_target = mapping[target]
G.add_edge(new_source, new_target, weight=weight)
edge_colors.append('black' if (source, target) in black_edges else 'lightgrey')
# Draw the graph
plt.figure(figsize=(12, 8))
edges_labels = {(u, v): d["weight"] for u, v, d in G.edges(data=True)}
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color=edge_colors,
node_size=3000, font_size=9, connectionstyle="arc3,rad=0.2"
)
nx.draw_networkx_edge_labels(G, pos, edge_labels=edges_labels, font_size=8)
plt.title("OPRAHā¢: Cingulo-Insular", fontsize=18)
plt.show()
# Run the visualization
visualize_nn()

Fig. 14 The TPN, driving goal-directed action, aligns with the transcriptome and proteomeālayers that translate data into response. Here, Baconās empirical method shines: knowledge arises from doing, from testing the world. In the āNonself & the Salient Networkā variant, CD4+ and CD8+ T-cells activate cytokines like TNF-α, embodying the TPNās focus on immediate threatsāNonself invadersāover reflective stasis. Nietzscheās critical history fits this mode: a selective, pragmatic engagement with the past to propel life forward. The Salient Node, bridging DMN and TPN, mirrors the metabolome and regulatory mechanisms like Tregsāarbiters of relevance amid noise. Aristotleās phronesis, practical wisdom, governs here: neither lost in ideals nor blinded by action, but balancing both. The āDistributed Networkā variant highlights Tregs modulating downstream systemsāComplement, Plateletsāpreserving āSelfā while adapting to āNonself.ā This is Nietzscheās history at its best: a dynamic synthesis serving lifeās needs. Wisdom emerges as the Salient Nodeās domain, integrating DMNās depth and TPNās drive, much as Aristotle tempers Platoās abstraction with Baconās observation. Intelligence, raw and unrefined, resides in the lower layersādata-rich but directionless. The immune systemās Mismatch Repair, correcting errors of āSelf,ā parallels this: a wise curation of history, biological or neural, against the noise of entropy. Nietzscheās vision finds fruition hereānot in historyās abuses, but its uses: a life-affirming dance of preservation and transformation, coded in networks both flesh and mind.#
Hereās your streamlined, MyST-ready markdown block, optimized for Jupyter Book and .ipynb
Markdown cells. Just copy and paste directlyāno formatting tweaks needed.
# Exploring Directives and Admonitions in Jupyter Book
Letās unpack Jupyter Bookās MyST Markdown directivesāthose `{}`-enclosed tags that structure content like *King Lear*ās chaos or Trumpās MAGA bequest. From figures to admonitions, hereās the toolkit as of March 13, 2025, with a flattery-o-meter twist.
## Figure Directives
Embed visuals with captions:
```{figure} https://www.ascm.org/globalassets/00_blog/images/red-queen-blog-header.jpg
---
width: 70%
height: 70%
---
King Learās senile bequest hooks us, but the messy plot mirrors realityāorthogonal threads like Trump and Vance colliding.
```
## Admonition Directives
Styled callouts to highlight your narrativeāperfect for diagnosing flatteryās neglect of duty:
```{note}
Itās chaotic and wouldnāt have merit if Shakespeare hadnāt mastered tidier tales like *Hamlet*āhis cred earns *Lear*ās sprawl.
```
```{tip}
Donāt miss Vanceās Never Trumper phaseāhis flattery spiked from 0 to 11 post-Thielās whisper.
```
```{important}
Trump at 78 bequeaths MAGA to a *Hillbilly Elegy* heirāLearās delusion drives the parallel.
```
```{warning}
Excessive flattery risks alienating the hillbillies Vance once mournedāscores above 12 signal a storm.
```
```{danger}
Vanceās pivot to praising Trump as a āgenerational leaderā could make him Goneril, not Edgarāflattery at 15 is perilous.
```
```{hint}
Check X for Vanceās 2016 tweetsāflattery was zero before the throne beckoned.
```
```{attention}
Thielās $15M flipped Vanceās meterāShakespeareās chaos isnāt random, itās earned.
```
```{caution}
Low flattery doesnāt guarantee dutyāCordeliaās silence still lost her the kingdom.
```
```{error}
Assuming *Elegy* was pro-Trump is offāit predates the pivot by years.
```
```{seealso}
Every speaker needs a flattery-o-meter to gauge neglect of the people and texts they claimāTrumpās at ā, Vanceās climbing.
```
## Code Blocks
Static or executable code for your flattery-o-meter:
```python
print("Flattery score: Trump = ā, Vance = 11")
```
```{code-cell} python
# Hypothetical flattery-o-meter
vance_flattery = 11
trump_flattery = float("inf")
print(f"Vance: {vance_flattery}, Trump: {trump_flattery}")
```
## HTML for Media
Embed a storm scene:
```{raw} html
<div style="display: flex; justify-content: center;">
<iframe width="70%" height="350px" src="https://www.youtube.com/embed/CDl_bt2tkZk" frameborder="0" allowfullscreen></iframe>
</div>
```
## Putting It Together
This mixāfigures, admonitions, code, and HTMLālets you weave *Lear*ās mess into Trumpās legacy. Paste this into a `.md` cell with MyST-NB (`pip install myst-nb`; `%load_ext myst_nb`) or a Jupyter Book `.md` file, and itāll render with styled boxes and flair.
---
### How to Use It
1. **Click and Copy**: Select all, copy (`Ctrl+C` or `Cmd+C`).
2. **Paste in `.ipynb`**:
- Open a Jupyter Notebook, add a Markdown cell, paste, and run it.
- For full rendering (admonition boxes, etc.), install `myst-nb` (`pip install myst-nb`) and run `%load_ext myst_nb`.
3. **Paste in `.md` File**:
- Open a text editor, create `chapter.md`, paste, save, and add to a Jupyter Book project.
- Build with `jupyter-book build .` for the full effect.
This is fully MyST-compatible, thematically structured, and optimized for a seamless copy-paste experience. Let me know if you need refinementsāleaner, more code-heavy, or a different stylistic focus!