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Remarks and examples stata.com

Remarks are presented under the following headings:

Baseline functions
Making baseline reasonable
Residuals and diagnostic measures
Multiple records per subject
Predictions after stcox with the tvc() option
Predictions after stcox with the shared() option
estat concordance

Baseline functions

predict after stcox provides estimates of the baseline survivor and baseline cumulative hazard
function, among other things. Here the term baseline means that these are the functions when all
covariates are set to zero, that is, they reflect (perhaps hypothetical) individuals who have zero-valued
measurements. When you specify predict’s basechazard option, you obtain the baseline cumulative
hazard. When you specify basesurv, you obtain the baseline survivor function. Additionally, when
you specify predict’s basehc option, you obtain estimates of the baseline hazard contribution at
each failure time, which are factors used to develop the product-limit estimator for the survivor
function generated by basesurv.

Although in theory S0(t) = exp{−H0(t)}, where S0(t) is the baseline survivor function and
H0(t) is the baseline cumulative hazard, the estimates produced by basechazard and basesurv
do not exactly correspond in this manner, although they closely do. The reason is that predict
after stcox uses different estimation schemes for each; the exact formulas are given in Methods and
formulas.

When the Cox model is fit with the strata() option, you obtain estimates of the baseline functions
for each stratum.

Example 1: Baseline survivor function

Baseline functions refer to the values of the functions when all covariates are set to 0. Let’s graph
the survival curve for the Stanford heart transplant model that we fit in example 3 of [ST] stcox, and
to make the baseline curve reasonable, let’s do that at age = 40 and year = 70.

Thus we will begin by creating variables that, when 0, correspond to the baseline values we desire,
and then we will fit our model with these variables instead. We then predict the baseline survivor
function and graph it:

. use https://www.stata-press.com/data/r18/stan3
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70
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If the Efron method for ties is specified at estimation, the partial log likelihood is

logLefron =

D∑
j=1

∑
i∈Dj

xiβ + offseti − d−1j

dj−1∑
k=0

log

∑
`∈Rj

exp(x`β + offset`)− kAj




for Aj = d−1j

∑
`∈Dj

exp(x`β + offset`). Weights are not supported with the Efron method.

At estimation, Stata also supports the exact marginal and exact partial methods for handling ties,
but only the Peto–Breslow and Efron methods are supported in regard to the calculation of residuals,
diagnostics, and other predictions. As such, only the partial log-likelihood formulas for those two
methods are presented above, for easier reference in what follows.

If you specified efron at estimation, all predictions are carried out using the Efron method; that is,
the handling of tied failures is done analogously to the way it was done when calculating logLefron.
If you specified breslow (or nothing, because breslow is the default), exactm, or exactp, all
predictions are carried out using the Peto–Breslow method. That is not to say that if you specify
exactm at estimation, your predictions will be the same as if you had specified breslow. The
formulas used will be the same, but the parameter estimates at which they are evaluated will differ
because those were based on different ways of handling ties.

Define zi = xiβ̂ + offseti. Schoenfeld residuals for the pth variable using the Peto–Breslow
method are given by

rSpi
= δi (xpi − api)

where

api =

∑
`∈Ri

w`xp` exp(z`)∑
`∈Ri

w` exp(z`)

δi indicates failure for observation i, and xpi is the pth element of xi. For the Efron method,
Schoenfeld residuals are

rSpi
= δi (xpi − bpi)

where

bpi = d−1i

di−1∑
k=0

∑
`∈Ri

xp` exp(z`)− kd−1i

∑
`∈Di

xp` exp(z`)∑
`∈Ri

exp(z`)− kd−1i

∑
`∈Di

exp(z`)

Schoenfeld residuals are derived from the first derivative of the log likelihood, with

∂ logL
∂βp

∣∣∣∣
β̂

=

N∑
i=1

rSpi
= 0

and only those observations that fail (δi = 1) contribute a Schoenfeld residual to the derivative.

For censored observations, Stata stores a missing value for the Schoenfeld residual even though the
above implies a value of 0. This is to emphasize that no calculation takes place when the observation
is censored.

Scaled Schoenfeld residuals are given by

r∗Si
= β̂ + d Var(β̂)rSi

where rSi
= (rS1i

, . . . , rSmi
)′, m is the number of regressors, and d is the total number of failures.
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In what follows, we assume the Peto–Breslow method for handling ties. Formulas for the Efron
method, while tedious, can be obtained by applying similar principles of averaging across risk sets,
as demonstrated above with Schoenfeld residuals.

Efficient score residuals are obtained by

rEpi = rSpi − exp(zi)
∑

j:t0i<tj≤ti

δjwj(xpi − apj)∑
`∈Rj

w` exp(z`)

Like Schoenfeld residuals, efficient score residuals are also additive components of the first derivative
of the log likelihood. Whereas Schoenfeld residuals are the contributions of each failure, efficient
score residuals are the contributions of each observation. Censored observations contribute to the log
likelihood (and its derivative) because they belong to risk sets at times when other observations fail. As
such, an observation’s contribution is twofold: 1) If the observation ends in failure, a risk assessment
is triggered, that is, a term in the log likelihood is computed. 2) Whether failed or censored, an
observation contributes to risk sets for other observations that do fail. Efficient score residuals reflect
both contributions.

The above computes efficient score residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the efficient score residual for a given subject
is calculated by summing the efficient scores over the observations within that subject.

Martingale residuals are

rMi
= δi − exp(zi)

∑
j:t0i<tj≤ti

wjδj∑
`∈Rj

w` exp(z`)

The above computes martingale residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the martingale residual for a given subject
is calculated by summing rMi over the observations within that subject.

Martingale residuals are in the range (−∞, 1). Deviance residuals are transformations of martingale
residuals designed to have a distribution that is more symmetric about zero. Deviance residuals are
calculated using

rDi
= sign(rMi

)

[
− 2 {rMi

+ δi log(δi − rMi
)}
]1/2

These residuals are expected to be symmetric about zero but do not necessarily sum to zero.

The above computes deviance residuals at the observation level. If you have multiple records per
subject and do not specify the partial option, then the deviance residual for a given subject is
calculated by applying the above transformation to the subject-level martingale residual.

The estimated baseline hazard contribution is obtained at each failure time as hj = 1− α̂j , where
α̂j is the solution to

∑
k∈Dj

exp(zk)

1− α̂ exp(zk)
j

=
∑
`∈Rj

exp(z`)

(Kalbfleisch and Prentice 2002, eq. 4.34, 115).
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The estimated baseline survivor function is

Ŝ0(t) =
∏

j:tj≤t

α̂j

When estimated with no covariates, Ŝ0(t) is the Kaplan–Meier estimate of the survivor function.

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor
function calculation, yet the values of α̂j are set at their starting values and are not iterated.
Equivalently,

Ĥ0(t) =
∑

j:tj≤t

dj∑
`∈Rj

exp(z`)

When estimated with no covariates, Ĥ0(t) is the Nelson–Aalen estimate of the cumulative hazard.

Cox–Snell residuals are calculated with

rCi
= δi − rMi

where rMi
are the martingale residuals. Equivalently, Cox–Snell residuals can be obtained with

rCi
= exp(zi)Ĥ0(ti)

The above computes Cox–Snell residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the Cox–Snell residual for a given subject
is calculated by summing rCi over the observations within that subject.

DFBETAs are calculated with
DFBETAi = rEi

Ṽar(β̂)

where rEi = (rE1i , . . . , rEmi) is a row vector of efficient score residuals with one entry for each
regressor, and Ṽar(β̂) is the model-based variance matrix of β̂.

Likelihood displacement values are calculated with

LDi = rEi
Var(β̂)r′Ei

(Collett 2015, 156). In both of the above, rEi can represent either one observation or, in multiple-
record data, the cumulative efficient score for an entire subject. For the former, the interpretation is
that due to deletion of one record; for the latter, the interpretation is that due to deletion of all of a
subject’s records.

Following Collett (2015, 156), LMAX values are obtained from an eigensystem analysis of

B = Θ Var(β̂) Θ′

where Θ is the N ×m matrix of efficient score residuals, with element (i, j) representing the jth
regressor and the ith observation (or subject). LMAX values are then the absolute values of the elements
of the unit-length eigenvector associated with the largest eigenvalue of the N ×N matrix B.



stcox postestimation — Postestimation tools for stcox 35

For shared-frailty models, the data are organized into G groups, with the ith group consisting of
ni observations, i = 1, . . . , G. From Therneau and Grambsch (2000, 253–255), for fixed θ, estimates
of β and ν1, . . . , νG are obtained by maximizing

logL(θ) = logLCox(β, ν1, . . . , νG) +

G∑
i=1

[
1

θ
{νi − exp(νi)}+

(
1

θ
+Di

){
1− log

(
1

θ
+Di

)}
− logθ

θ
+ logΓ

(
1

θ
+Di

)
− logΓ

(
1

θ

)]
where Di is the number of death events in group i, and logLCox(β, ν1, . . . , νG) is the standard Cox
partial log likelihood, with the νi treated as the coefficients of indicator variables identifying the
groups. That is, the jth observation in the ith group has log relative-hazard xijβ + νi.

You obtain the estimates of ν1, . . . , νG with predict’s effects option after stcox, shared().

estat concordance
Harrell’s C was proposed by Harrell et al. (1982) and was developed to evaluate the results

of a medical test. The C index is defined as the proportion of all usable subject pairs in which
the predictions and outcomes are concordant. The C index may be applied to ordinary continuous
outcomes, dichotomous diagnostic outcomes, ordinal outcomes, and censored time-until-event response
variables.

In predicting the time until death, C is calculated by considering all comparable patient pairs. A
pair of patients is comparable if either 1) the two have different values on the time variable, and
the one with the lowest value presents a failure, or 2) the two have the same value on the time
variable, and exactly one of them presents a failure. If the predicted survival time is larger for the
patient who lived longer, the predictions for the pair are said to be concordant with the outcomes.
From Fibrinogen Studies Collaboration (2009), Harrell’s C is defined as

∑
k(Ek +Tk/2)/

∑
k(Dk),

where Dk is the total number of pairs usable for comparison in stratum k, Ek is the number of pairs
for which the predictions are concordant with the outcomes and the predictions are not identical in
stratum k, and Tk is the number of usable pairs for which the predictions are identical in stratum k.
If there are no strata specified, then the formula for Harrell’s C reduces to (E + T/2)/D.

For a Cox proportional hazards model, the probability that the patient survives past time t is given
by S0(t) raised to the exp(xβ) power, where S0(t) is the baseline survivor function, x denotes a set
of measurements for the patient, and β is the vector of coefficients. A Cox regression model is fit by
the stcox command. The hazard ratio, exp(xβ), is obtained by predict after stcox. Because the
predicted survival time and the predicted survivor function are one-to-one functions of each other,
the predicted survivor function can be used to calculate C instead of the predicted survival time. The
predicted survivor function decreases when the predicted hazard ratio increases; therefore, Harrell’s
C can be calculated by computing E, T , and D, based on the observed outcomes and the predicted
hazard ratios.

C takes a value between 0 and 1. A value of 0.5 indicates no predictive discrimination, and values
of 0 or 1.0 indicate perfect separation of subjects with different outcomes. See Harrell, Lee, and
Mark (1996) for more details. Somers’s D rank correlation is calculated by 2C−1; see Newson (2002)
for a discussion of Somers’s D.

In the presence of censoring, Harrell’s C coefficient tends to be biased. An alternative measure
of concordance that is asymptotically unbiased with censored data was proposed by Gönen and
Heller (2005). This estimator does not depend on observed time directly and is a function of only
the regression parameters and the covariate distribution, which leads to its asymptotic unbiasedness
and thus robustness to the degree of censoring.
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Let ∆xij be the pairwise difference xi − xj . Then Gönen and Heller’s concordance probability
estimator is given by

K ≡ KN (β̂) =
2

N(N − 1)

∑
i<j

∑{
I(∆xjiβ̂ ≤ 0)

1 + exp(∆xjiβ̂)
+

I(∆xijβ̂ < 0)

1 + exp(∆xijβ̂)

}
(1)

where I(·) is the indicator function. Somers’s D rank correlation is calculated by 2K − 1.

The concordance probability estimator (1) involves indicator functions and thus is a nonsmooth
function for which the asymptotic standard error cannot be computed directly. To obtain the standard
error, a smooth approximation to this estimator is considered:

K̃ ≡ K̃N (β̂) =
2

N(N − 1)

∑
i<j

∑{
Φ(−∆xjiβ̂/h)

1 + exp(∆xjiβ̂)
+

Φ(−∆xijβ̂/h)

1 + exp(∆xijβ̂)

}
(2)

where Φ(·) is a standard normal distribution function, h = 0.5σ̂N−1/3 is a smoothing bandwidth,
and σ̂ is the estimated standard deviation of the subject-specific linear predictors xiβ̂.

The asymptotic standard error is then computed using a first-order Taylor series expansion of (2)
around the true parameter β; see Gönen and Heller (2005) for computational details.

References
Cattaneo, M. D., P. Malighetti, and D. Spinelli. 2017. Estimating receiver operative characteristic curves for time-

dependent outcomes: The stroccurve package. Stata Journal 17: 1015–1023.

Cefalu, M. S. 2011. Pointwise confidence intervals for the covariate-adjusted survivor function in the Cox model.
Stata Journal 11: 64–81.

Collett, D. 2015. Modelling Survival Data in Medical Research. 3rd ed. Boca Raton, FL: Chapman and Hall/CRC.

Fibrinogen Studies Collaboration. 2009. Measures to assess the prognostic ability of the stratified Cox proportional
hazards model. Statistics in Medicine 28: 389–411. https://doi.org/10.1002/sim.3378.

Gönen, M., and G. Heller. 2005. Concordance probability and discriminatory power in proportional hazards regression.
Biometrika 92: 965–970. https://doi.org/10.1093/biomet/92.4.965.

Harrell, F. E., Jr., R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati. 1982. Evaluating the yield of medical tests.
Journal of the American Medical Association 247: 2543–2546. https://doi.org/10.1001/jama.1982.03320430047030.

Harrell, F. E., Jr., K. L. Lee, and D. B. Mark. 1996. Multivariable prognostic models: Issues in developing models,
evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15: 361–387.
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4〈361::AID-SIM168〉3.0.CO;2-4.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The Statistical Analysis of Failure Time Data. 2nd ed. New York: Wiley.

Klein, J. P., and M. L. Moeschberger. 2003. Survival Analysis: Techniques for Censored and Truncated Data. 2nd
ed. New York: Springer.

Mansuy, R. 2009. The origins of the word “martingale”. Electronic Journal for History of Probability and Statistics
5: 1–10. http://www.jehps.net/juin2009/Mansuy.pdf.

Mazliak, L., and G. Shafer. 2009. The splendors and miseries of martingales. Electronic Journal for History of
Probability and Statistics 5: 1–5. http://www.jehps.net/juin2009/MazliakShafer.pdf.

Metzger, S. K., and B. T. Jones. 2018. mstatecox: A package for simulating transition probabilities from semiparametric
multistate survival models. Stata Journal 18: 533–563.

. 2021. Properly calculating estat phtest in the presence of stratified hazards. Stata Journal 21: 1028–1033.

Newson, R. B. 2002. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and median differences.
Stata Journal 2: 45–64.


	temp1
	temp2

