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A virtual rodent predicts the structure of 
neural activity across behaviours

Diego Aldarondo1,4 ✉, Josh Merel2,4, Jesse D. Marshall1,5, Leonard Hasenclever2, 
Ugne Klibaite1, Amanda Gellis1, Yuval Tassa2, Greg Wayne2, Matthew Botvinick2,3 & 
Bence P. Ölveczky1 ✉

Animals have exquisite control of their bodies, allowing them to perform a diverse 
range of behaviours. How such control is implemented by the brain, however, remains 
unclear. Advancing our understanding requires models that can relate principles  
of control to the structure of neural activity in behaving animals. Here, to facilitate 
this, we built a ‘virtual rodent’, in which an artificial neural network actuates a 
biomechanically realistic model of the rat1 in a physics simulator2. We used deep 
reinforcement learning3–5 to train the virtual agent to imitate the behaviour of freely 
moving rats, thus allowing us to compare neural activity recorded in real rats to the 
network activity of a virtual rodent mimicking their behaviour. We found that neural 
activity in the sensorimotor striatum and motor cortex was better predicted by the 
virtual rodent’s network activity than by any features of the real rat’s movements, 
consistent with both regions implementing inverse dynamics6. Furthermore, the 
network’s latent variability predicted the structure of neural variability across 
behaviours and afforded robustness in a way consistent with the minimal intervention 
principle of optimal feedback control7. These results demonstrate how physical 
simulation of biomechanically realistic virtual animals can help interpret the 
structure of neural activity across behaviour and relate it to theoretical principles of 
motor control.

Humans and animals control their bodies with an ease and efficiency 
that has been difficult to emulate in engineered systems. This lack of 
computational analogues has hindered progress in motor neurosci-
ence, as neural activity in the motor system is only rarely interpreted 
relative to models that causally generate complex, naturalistic move-
ment8–11. In lieu of such generative models, neuroscientists have tried 
to infer motor system function by relating neural activity in relevant 
brain areas to measurable features of movement, such as the kinematics 
and dynamics of different body parts12–15. This is problematic because 
movement features are inherently correlated through physics, and the 
representational models based on them can only describe behaviour, 
not causally generate it8,16. Here, we propose an alternative approach: 
to infer computational principles of biological motor control by relat-
ing neural activity in motor regions to models that implement their 
hypothesized functions and replicate the movements and behaviours 
of real animals (Fig. 1a,b).

To enable this line of enquiry and probe its utility, we developed a 
virtual rodent by training artificial neural networks (ANNs) controlling 
a biomechanically realistic model of the rat to reproduce natural behav-
iours of real rats. This allowed us to relate neural activity recorded from 
real animals to the network activity of the virtual rodent performing 
the same behaviours. Analogous approaches have proven successful 
in relating the structure of neural activity to computational functions 

in other domains, including vision17–19, audition20, olfaction21,22, ther-
mosensation23, perceptual discrimination24, facial perception25 and 
navigation26,27. However, there have been relatively few attempts to 
similarly model the neural control of movement, and those that did 
mainly probed how artificial controllers resemble neural activity during 
specific motor tasks or across a limited range of behaviours or effec-
tors. Regardless, these pioneering efforts demonstrated the capacity of 
simple brain-inspired controllers to reproduce animal locomotion10,28,29, 
showed how biomechanics can influence neural representations of 
movement9 and showed similarities between the representations of 
movement in artificial and biological neural networks8,30,31.

Modelling the neural control of diverse, natural behaviours is a larger 
undertaking with several unique challenges. Importantly, because 
animals evolved to skilfully control their bodies to solve challenges 
in complex environments32, our models should control biomechani-
cally realistic bodies in closed loop with physically realistic environ-
ments7. Furthermore, because animals express a diverse range of 
species-typical behaviours, our models should be able to replicate 
these33. Finally, our models should demonstrate robustness to neural 
noise and other sources of variability inherent to biological control 
systems7,34. Modelling the neural control of movement at this degree 
of richness and realism has been hampered by a scarcity of high-fidelity 
three-dimensional (3D) kinematic measurements, tools to physically 
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simulate animal bodies and methods to build agents that replicate the 
diversity of animal behaviour.

To overcome these challenges, we developed a processing pipeline 
called MIMIC (motor imitation and control) (Fig. 1c–f and Supplemen-
tary Video 1). MIMIC leverages 3D animal pose estimation35 and an 
actuatable skeletal model1 amenable to simulation in MuJoCo2, a phys-
ics engine, to build a virtual rodent that can imitate natural behaviour 
under realistic constraints. Specifically, MIMIC uses deep reinforce-
ment learning3,4 to train ANNs to implement an inverse dynamics model, 
a function that specifies the actions (that is, joint torques) required to 
achieve a desired state (that is, body configuration) given the current 
state. We used the ANNs to control a biomechanical model of the rat, 
training it to imitate the movements of real rats across their behavioural 
repertoire. This allowed us to directly compare neural activity in freely 
moving animals to the activations of inverse dynamics models enacting 
the same behaviours.

We used this approach to interpret neural activity in the sensorimo-
tor striatum (dorsolateral striatum (DLS) in rodents) and motor cortex 
(MC) of rats, two hierarchically distinct structures of the mammalian 
motor system for which the neural representations of natural behav-
iours have previously been described36–39. We found that the structure 

of neural activity across behaviours was better predicted by the virtual 
rodent’s network activity than any kinematic or dynamic feature of 
movement in the recorded rat, consistent with a role for both regions 
in implementing inverse dynamics. Furthermore, by perturbing the 
network’s latent variability, we found that it structures action variability 
to achieve robust control across a diverse repertoire of behaviour in 
a manner consistent with theoretical principles of optimal feedback 
control7. Furthermore, the network activity was predictive of the struc-
ture of neural variability across behaviours, indicating that the brain 
structures variability in accordance with these principles.

To compare an artificial control system to a real brain producing 
natural behaviours requires measuring the full-body kinematics and 
neural activity of real animals. To this end, we recorded the behaviour 
of freely moving rats in a circular arena with an array of six cameras 
while measuring neural activity from the DLS or MC (DLS: three ani-
mals, 353.5 h, 1,249 neurons; MC: three animals, 253.5 h, 843 neurons) 
with custom 128-channel tetrode drives (Fig. 1c and Extended Data 
Fig. 1). To infer full-body kinematics from the videos, we tracked the 3D 
position of 23 anatomical landmarks (keypoints) on the animal using  
DANNCE35 (Fig. 1d, Extended Data Fig. 2a–c and Supplementary 
Video 2). We used a feature extraction, embedding and clustering 
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Fig. 1 | Comparing biological and artificial control across the behavioural 
repertoire with MIMIC. a, To compare neural activity in behaving animals to 
computational functions in control, we trained ANNs actuating a biomechanical 
model of the rat to imitate the behaviour of real rats. b, Top, representational 
approaches in neuroscience interpret neural activity in relation to measurable 
features of movement. Bottom, computational approaches, in contrast, can 
relate neural activity to specific control functions, such as internal models.  
c–f, The MIMIC pipeline. c, Left, schematic of experimental apparatus for 
behavioural and electrophysiological recording. A tetrode array recorded 

electrical activity of neurons in DLS or MC. Right, example images taken during 
a walking sequence. d, Left, schematic of the DANNCE pose estimation pipeline. 
Multiview images were processed by a U-net to produce keypoint estimates. 
Right, walking sequence with overlaid keypoint estimates. e, Left, we registered 
a skeletal model of the rat to the keypoints in each frame using STAC. Right, 
walking sequence with overlaid skeletal registration. f, Left, we trained an  
ANN to actuate the biomechanical model in MuJoCo to imitate the reference 
trajectories. Right, walking sequence simulated in MuJoCo.
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approach to identify discrete behaviours from kinematic data, as 
described previously40–43. To enable physical simulation in MuJoCo2, 
we registered a skeletal model of the rat1 with 74 degrees of freedom 
(DoF) (38 controllable DoF) to the keypoints using a custom implemen-
tation of the simultaneous tracking and calibration (STAC)44 algorithm 
(Fig. 1e, Extended Data Fig. 2d–f and Supplementary Video 3). We next 
compiled a diverse catalogue of behavioural motifs (847 5 s snippets) 
spanning the behavioural repertoire of the rat to provide training data 
for our ANN controllers.

Controlling a complex body to perform diverse natural behaviours 
requires a remarkable degree of flexibility in the underlying control 
system. Biological control systems are widely believed to achieve such 
flexibility by implementing internal models: that is, neural computa-
tions that approximate the complex dynamics of the body. Here, we 
focus on the simplest feedback controller that uses an internal model 
to recapitulate the behavioural repertoire of the rat (Supplementary 
Discussion 1). This minimal controller takes as inputs the current state 
of the body, its desired future state and uses an internal model called 
an inverse dynamics model to estimate the action required to achieve 
the desired future state given the current state4,6. Despite its relatively 
simple formulation, building a single controller that replicates diverse 
behaviours while controlling a complex body is a challenging task for 
which performant methods have only recently been developed3–5,45.

Therefore, to build virtual rodents that imitate real animal behav-
iour, we trained ANNs to implement inverse dynamics models using 
deep reinforcement learning as in recent work (Fig. 1f)3,4. The networks 
accepted as input a reference trajectory of the real animal’s future move-
ments and combined a compressed representation of the reference 
trajectory with the current state of the body to generate an action, thus 
implementing an inverse dynamics model (Fig. 2a). For ease of discus-
sion, we refer to the subnetwork that encodes the reference trajectory 
as the ‘encoder’ and the remainder of the network as the ‘decoder’. The 
state vector was defined as the joint angular position and velocity of 
the virtual rodent’s full-body pose, as well as simulated measurements 
from inertial and force sensors. The reference trajectory was defined 
as the states (excluding the inertial and force sensors) visited by the 
real rat in the immediate future (ranging from 20 to 200 ms), expressed 
relative to the current state of the virtual rodent’s body. The action was 
defined as torques at 38 actuators ( joints) along the body. The net-
works operated over short timescales to generate actions that moved 
the virtual rodent in the simulated environment, running at 50 Hz in a 
sliding-window fashion to imitate arbitrarily long bouts of behaviour. 
To study how different network architectures and hyperparameters 
affected imitation performance, we varied the decoder architecture, 
regularization of the latent encoding, presence of autoregression, defi-
nition of the action and reference trajectory duration. During training, 
the states visited by the virtual rodents were compared to the reference 
trajectory of the animal being imitated. This allowed us to calculate 
the reward at each frame using several objectives related to different 
kinematic and dynamic features of movement (Methods). Through 
trial and error, the networks learned to produce actions that moved 
the body of the virtual rodent in ways that matched the real animal’s 
movements (Supplementary Video 1).

Controlling a high DoF body to imitate diverse animal movements 
is a challenging task for which the performance and generalization of 
artificial agents has only recently been characterized3–5,45. Remarkably, 
not only did the virtual rodent reliably and faithfully replicate move-
ments in the training set, but the ANN controllers also generalized to 
held-out movements (Fig. 2b–e and Extended Data Fig. 3). This success 
in imitating unseen examples allowed us to evaluate the virtual rodent 
over the entirety of our dataset. To do so efficiently, we divided the 
607 h dataset into contiguous 50 s chunks and ran the networks over 
all chunks in parallel. We found that all trained networks were capable 
of faithful imitation, but networks with recurrent decoders outper-
formed other architectures (Extended Data Fig. 3a,b), particularly 

during slower movements (Extended Data Fig. 3c,d). For these net-
works, most of the deviations from the real rat’s kinematics could be 
attributed to accumulation of error in the centre of mass (CoM) over 
time (Fig. 2d–f). To mitigate this, we implemented a termination and 
reset condition that was triggered when the virtual rodents deviated 
excessively from the reference trajectory (Methods). We used this 
to derive a measure of imitation robustness46 by analysing the dis-
tribution of durations between resets, which we refer to as episode 
durations. Regardless of the specific ANN implementation, the vir-
tual rodent showed remarkable robustness, imitating long bouts of 
behaviour without termination (Fig. 2g and Extended Data Fig. 3b). 
Given the short-timescale nature of the inverse dynamics models, we 
wondered whether providing the networks with more context about 
the upcoming movements would result in more robust control. For the 
most performant architectures, increasing the length of the reference 
trajectory resulted in models with greater robustness at the expense of 
imitation performance (Extended Data Fig. 3g–i), indicating a tradeoff 
between robustness and imitation fidelity when selecting the duration 
of the reference trajectory.

Having models that faithfully imitate natural behaviours of real rats 
allowed us to compare neural activity in real animals to the activations 
of a virtual rodent performing the same behaviours (Fig. 3a). To com-
pare the dynamics of real and virtual control systems, we performed 
encoding analysis and representational similarity analysis, established 
methods that allowed us to probe the correspondences at the levels 
of both single-neuron activity and population activity structure. To 
establish a baseline and a point of reference, we estimated the extent 
to which measurable or inferable features of behaviour (representa-
tional models) relating to the kinematics and dynamics of movement 
(Fig. 1b) could predict the activity of putative single units (20 ms bins) in 
held-out data using Poisson generalized linear models (GLMs). Consist-
ent with previous reports36,39,47, the most predictive representational 
feature was pose (Fig. 3b,c), with the activity of individual neurons being 
best predicted by the kinematics of different body parts (Extended 
Data Fig. 4a–d).

We next compared the predictivity of the inverse dynamics models 
against representational models. Although we focus on a network drawn 
from the most performant class of models, namely those with recurrent 
decoders, we note that all architectures exhibited qualitatively similar 
results. Because the virtual rodent produced behaviours that deviated 
slightly from those of real rats (Fig. 2d,e), our inverse dynamics model 
started at a disadvantage relative to the representational models, which 
were referenced to the real rat’s movements. Despite this handicap, we 
found that the inverse dynamics model predicted the activity in both 
brain regions significantly better than any representational model, with 
the best results coming from the first layer of the decoder (Fig. 3b–d and 
Extended Data Figs. 4e–h and 10). We observed similar results across 
striatal cell types (Methods and Extended Data Fig. 5). To estimate the 
temporal relationships between neural activity, kinematics and our 
inverse dynamics model, we trained GLMs using different temporal 
offsets between the predictors and neural activity. Most neurons in 
DLS and MC were premotor, meaning that their neural activity was 
best predicted by future kinematics and concurrent activations of the 
inverse dynamics model (Extended Data Fig. 6).

To analyse the structure of population activity in MC and DLS 
across behaviours and assess the degree to which it is captured by 
representational models and inverse dynamics models, we performed 
representational similarity analysis (RSA)48. For our purposes, this 
involved quantifying how different model features were structured 
across behaviours using a representational dissimilarity matrix (RDM) 
and comparing the RDMs generated from representational features 
or activations of the inverse dynamics models with those generated 
from neural population activity in DLS and MC. For all features, we 
computed RDMs by calculating the average vector for each behaviour 
and computing the pairwise distance between these vectors using the 
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cross-validated Mahalanobis distance (Methods). Although we focused 
on the most performant network, we note that all networks exhibited 
qualitatively similar results. Individual neurons in DLS and MC were 
preferentially tuned to specific behavioural categories, resulting in 
RDMs that reflect the population activity structure across behaviours 
(Fig. 4a,b). We found that the neural population activity RDMs of both 
DLS and MC were more similar to the inverse dynamics model RDMs 
than those of the representational models (Fig. 4c–e). Moreover, when 
comparing across networks, we found that the similarity between RDMs 
constructed from inverse dynamics models and neural activity in DLS 
and MC was strongly correlated with the imitation performance and 
robustness of the network (Fig. 4f–i). This indicates that more perfor-
mant models exhibit representations more similar to those of both DLS 

and MC, consistent with previous reports comparing neural activity 
with task-optimized neural networks17,20.

To verify that the increased predictivity of inverse dynamics models 
relative to representational models was a result of learning the dynam-
ics of a realistic body, we changed the body to see if it affected the fidel-
ity of behavioural imitation and neural predictivity of our models. In 
a ‘mass scaling’ experiment, we trained the virtual rodent to control 
bodies with total masses that varied from half to twice the standard 
mass. In a ‘relative head scaling’ experiment, we trained it to control 
bodies where the mass of the head relative to the rest of the body var-
ied from half to twice the standard ratio while maintaining the same 
total mass. These subtle modifications to the body model frequently 
resulted in policies with degraded imitation performance (Extended 
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Fig. 2 | Training artificial agents to imitate rat behaviour with MIMIC. a, We 
train a virtual rodent to imitate the 3D whole-body movements of real rats in 
MuJoCo with deep reinforcement learning (Methods). All networks implement 
an inverse dynamics model that produces the actions required to realize a 
reference trajectory given the current state. All simulated data in this figure are 
derived from models with LSTM decoders. b, Left, keypoint trajectories of the 
real rat. Right, model-derived keypoint trajectories of the virtual rat imitating 
the real rat’s behaviour (top, anterior–posterior (AP) axis; bottom, height  
from the floor). c, Example sequences of a rat performing different behaviours. 
Overlays rendered in MuJoCo depict the imitated movements. d,e, Imitation on 
held-out data is accurate for all body parts (d) and across different behaviours (e). 
The total error is the average Euclidean distance between the model and 
anatomical keypoints, whereas the pose error indicates the Euclidean distance 

up to a Procrustes transformation without scaling. Box centres indicate 
median, box limits indicate interquartile range, box whiskers indicate the 
maximum or minimum values up to 1.5 times the interquartile range from  
the box limits. b–e feature data from a model with a recurrent decoder and  
a Kullback–Liebler regularization of 1 × 10−4. f, Accumulation of error as a 
function of time from episode initiation. Deviations from the reference 
trajectory accumulate over time, with drift in the position of the centre of mass 
(CoM) accounting for much of the total error. g, The proportion of episodes 
exceeding a given duration. Shaded regions indicate the standard error of the 
mean across all models with LSTM decoders. d–g include data from 28 3 h 
sessions, with four sessions drawn from each of seven animals. ref, reference 
trajectory; μ, latent mean; σ, latent variability; z, latent sample; s, state; a, action.
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Data Figs. 7a,b and 8a,b). They also reduced overall putative single-unit 
predictivity from features of many inverse dynamics models (Extended 
Data Figs. 7c,d and 8c,d) and occasionally reduced the representational 
similarity to neural activity (Extended Data Figs. 7e,f and 8e,f). These 
results show that subtle changes to the body model can affect both the 
virtual rodent’s behaviour and its neural predictivity.

We next studied how the predictivity of our inverse dynamics models 
compared to that of ANNs implementing other control functions. To 
test this, we used data from the most performant inverse dynamics 
model (Methods) to train ANNs by means of supervised learning49,50 
to implement a forward model and a sequential forecasting model 
(Extended Data Fig. 9a–c). Neither model could predict putative 
single-unit activity in MC or DLS more accurately than the inverse 
dynamics model (Extended Data Fig. 10a,b). Similarly, neither model 
could predict the representational similarity structure of MC and DLS 
as well as the inverse dynamics model (Extended Data Fig. 9d–f), con-
sistent with these brain areas reflecting computations associated with 
inverse dynamics.

In addition to imitating animal behaviour and predicting the struc-
ture of neural activity, simulated controllers allow us to study control 
processes that are difficult to access experimentally. A long-standing 
question that can be uniquely studied in this way relates to how move-
ment variability is shaped by the nervous system. It has been widely 
observed that animals structure movement variability differently 
depending on the task, with variability preferentially quenched along 
task-relevant dimensions in accordance with the minimal interven-
tion principle7,51,52. In the context of optimal feedback control, such 
‘structured variability’ is thought to result from regularizations of 
the cost functions associated with movement generation52, such as 
the minimization of jerk53 or energy expenditure. However, with the 
notable exception of signal-dependent noise54, how neural activity 
in biological control networks shapes variability in motor output 
remains largely unexplored (although see ref. 55). To address this, 
we leveraged the stochastic nature of our inverse dynamics models 
to study whether and how its ‘neural’ variability structured action  
variability.
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To probe the relationship between ‘neural’ variability and action 
variability, we focused on two components of the network: the 
latent variability, a part of the latent encoding that parametrizes 
the variability of a 60-dimensional Gaussian distribution, and the 
action the network outputs. We used the generative nature of the 
latent encoding to relate latent variability at a given timepoint 
(‘instantaneous’ latent variability) to the variability of the distribu-
tion of actions that emerge from repeated resampling of this latent 
encoding (‘instantaneous’ action variability; Fig. 5a). We use the 
phrase instantaneous variability to differentiate from other types 
of variability, such as trial-to-trial variability or temporal variability. 

Importantly, these quantities can only be directly accessed through  
simulation.

To determine whether the virtual rodent’s actions exhibited struc-
tured variability, we estimated the instantaneous action variability at 
each timepoint (Fig. 5a) and averaged across behavioural categories. As 
in biological controllers, the structure of variability across the model’s 
actuators showed a strong dependence on the behaviour (that is, the 
task) being performed (Fig. 5b). However, unlike in biological con-
trollers, signal-dependent noise cannot contribute to this structured 
variability as none of the sources of variability in the network were 
signal-dependent by construction. Consistent with action variability 
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Fig. 4 | The representational structure of neural populations in DLS and MC 
across behaviours resembles that of an inverse model. a, Average normalized 
firing rate for single units in DLS and MC as a function of behaviour. b, Average 
RDMs for neural activity in DLS and MC and the average of layers in the encoder 
and decoder. Row and column indices are equal across RDMs and sorted by 
means of hierarchical clustering on the average neural activity RDM across all 
animals. c–e, Across-subject average of whitened unbiased cosine (WUC), 
similarity between RDMs of different computational and representational 
models and neural activity. Layers of the inverse dynamics model predict the 
dissimilarity structure of neural activity in DLS (panel c) and MC (panel d) 
better than representational models (panel e). Error bars indicate s.e.m. and 
cicles and dew drops indicate significant differences from the noise ceiling  
and zero (Bonferroni corrected, α = 0.05, one-sided t-test). Grey bars indicate 

the estimated noise ceiling of the true model. Open circles indicate the 
comparison model; downward ticks on the wings extending from the 
comparison model indicate significant differences between models 
(Benjamini–Hochberg corrected, false discovery rate α = 0.05, one-sided 
t-test). Points indicate individual animals (N = 3 individuals in c and d, N = 6 
individuals in e). f, Comparing average imitation reward and the mean WUC 
similarity with DLS or MC neural activity on held-out data for all networks. The 
average WUC similarity is the average similarity of all network layers relative to 
neural activity for a given network. Each point denotes a single network across 
all animals for a given brain region. g, Comparison of average WUC similarity 
and the average episode length for all networks. h,i, Same as f (h) and g (i) 
except each point denotes a single network–animal pair. Max., maximum.
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being controlled by the network’s latent variability, we found that their 
dissimilarity structures across behaviours were similar (Fig. 5c), with 
individual latent dimensions expanding or contracting their variability 
as the virtual rodent performed different behaviours (Fig. 5d). Indeed, 
the behavioural dependence was so strong that the latent variability 
alone was sufficient to identify the behaviour enacted at any given time 
(Fig. 5e). To relate the latent variability structure across behaviour in 
the virtual rodent with the neural variability structure of real animals, 
we compared RDMs derived from the latent variability and the tem-
poral variability of neural activity evaluated over a 1 s moving window 
(Methods). Intriguingly, the latent variability structure resembled 
that of the temporal variability of neural activity across behaviours 
(Extended Data Fig. 9g–i), indicating that the inverse dynamics models 
predict not only the structure of neural activity but also its variability.

To determine whether the structure of the virtual rodent’s latent vari-
ability afforded robustness in accordance with the minimal intervention 
principle, we changed it in two different ways. We made the variability 
across all dimensions of the latent encoding uniform and, in a different 
simulation, inverted the variability: that is, quenching it in dimensions 
with normally high variability and vice versa (Methods and Fig. 5f). 
These deviations from the virtual rodent’s learned variability structure 

resulted in poorer imitation and more frequent failures at equal noise 
levels (Fig. 5f–h), consistent with the system’s variability structure obey-
ing the minimal intervention principle7. To be clear, we do not suggest 
that the latent variability itself improves performance or robustness. 
In fact, models with stronger latent regularization and thus greater 
latent variability performed slightly worse in terms of imitation reward 
and robustness on the testing set (Extended Data Fig. 3e,f). Instead, 
these results, coupled with the training objective (Supplementary 
Discussion 2), show that the virtual rodent adaptively shapes latent 
variability to increase robustness according to behavioural demands 
(Fig. 5i), affording robustness in the face of unquenchable noise. This 
structured variability emerges solely from latent variable compression, 
indicating a link between mechanisms for robustness and generaliz-
ability (see also refs. 25,56).

Discussion
How the brain achieves robust and flexible control of complex bodies 
has remained a puzzle in large measure because of the lack of expressiv-
ity in our models and their reductionist nature. Here, we address these 
limitations by taking a holistic approach to sensorimotor control that 

Action variability Latent variability

Critical

Non-critical

Latent 1
La

te
nt

 2
Action 1

A
ct

io
n 

2 

Behaviour 1 Behaviour 2

Critical

Non-critical

zt

st
Decoder

Behaviour

B
eh

av
io

ur

0 1 2
Noise level

0.6

0.7

0.8

R
ew

ar
d

Te
rm

in
at

io
ns

p
er

 h
 (×

10
3 )

Noise level
0 1 2

0

2

La
te

nt
 2

Latent 1

Standard

Uniform

Inverted

a b

f hg i

c

–2.5

0

2.5

z-
sc

or
ed

 
la

te
nt

 v
ar

ia
nc

e

Rear

Time (s)

Groom Prone

5 s

Latent variability

LD
2

LD1 (a.u.)

Prone
Rear

Walk

d e

Latent
variability

distribution

0

2

C
or

re
la

tio
n 

d
is

ta
nc

e

High rearLow rear Walk

******

Rea
r
Snif

f

Pro
ne

Am
ble

Gro
om SlowW

alk Rea
r
Snif

f

Pro
ne

Am
ble

Gro
omSlowW

alk

Prone Sniff Groom

Action variability

Modelling
instantaneous 

action variability

t t
zt

Decoder

at

st

Repeated
sampling

ActionsLatents

Standard structure Uniform structure Inverted structure

Fig. 5 | Stochastic controllers regulate motor variability as a function of 
behaviour by changing latent variability. a, We estimate instantaneous 
action variability as the standard deviation of the set of actions obtained by 
resampling the latent space 50 times at every step. To avoid long-term temporal 
dependencies, simulations in this figure use a torque-actuated controller with 
an MLP decoder and a Kullback–Liebler regularization coefficient of 1 × 10−3.  
b, Action variability differs as a function of behaviour (P < 0.001, one-sided 
permutation test; see Methods). Each sphere corresponds to a single actuator; 
its colour and size indicate its normalized action variability during the 
designated behaviour. c, RDMs of action variability and latent variability across 
behaviours. d, Trajectories of six latent dimensions along which variability was 
differentially regulated across behaviour. Shaded regions indicate times in 
which corresponding behaviours were performed. Dimensions coloured in red 
increase variability during grooms, whereas dimensions coloured in purple 

increase variability during rears and grooms and quench variability during 
prone. e, Scatter plot depicting the latent variability at single time points 
plotted on the first two linear discriminants for three behavioural categories. 
The population latent variability discriminates behaviours (P < 0.001, 
one-sided permutation test; LD1 and LD2 denote linear discriminants 1 and 2 
respectively, see Methods). f, Schematic depicting changes to the structure  
of latent variability (see text). g,h, The deviations from normal variability 
structure reduce the model’s robustness to noise (P < 0.001, one-sided Welch’s 
t-test) (g) and termination rate (P < 0.001, one-sided Chi-squared test) (h). 
Lines indicate significant differences between conditions. i, The latent 
variability is differentially shaped as a function of behaviour to structure  
action variability in accordance with the minimal intervention principle. a.u., 
arbitrary units.



Nature | Vol 632 | 15 August 2024 | 601

emphasizes embodiment, sensory feedback, stochastic control and 
diverse behaviour. Our approach reflects a belief that motor system 
function cannot be understood independent of the body it evolved to 
control or the behaviours it evolved to produce (Fig. 1a).

To demonstrate the utility of this approach, we developed a virtual 
rodent in which a fully configurable and transparent ANN controls a 
biomechanically realistic model of a rat in a physics simulator (Sup-
plementary Discussion 3). In constructing such a system, we needed 
to balance tractability, expressivity and biological realism at the level 
of both the biomechanical plant and its controller. In this work, we 
opted for the simplest model that could recapitulate the behavioural 
repertoire of the rat and predict the structure of neural activity in the 
brain across behaviour. The result was a plant with point-torque actua-
tion and a controller implementing inverse dynamics. Our simulations 
show that this level of model abstraction, which notably omits muscular 
actuation, is already sufficient to achieve our objectives. As we and 
others extend these biomechanical models to include whole-body 
musculoskeletal actuation57, it will be interesting to probe the degree 
to which such increased biomechanical realism further informs our 
understanding of the neural control of movement.

To train the virtual rodents to replicate spontaneous behaviours of 
real rats (Fig. 2), we developed an imitation learning pipeline, MIMIC 
(Fig. 1c–f). We found that the virtual rodents generalized to unseen 
movements across the entirety of our dataset with high fidelity and 
robustness (Fig. 2 and Extended Data Fig. 3). In comparing the network 
activations to neural recordings in real rats performing the same behav-
iours, we found that our model explained the structure of recorded 
neural activity across a wide range of naturalistic behaviours better 
than any traditional representational model (Figs. 3 and 4). Because 
the virtual rodent’s ANN implements an inverse dynamics model, the 
observation that its network activations predict single-unit and popu-
lation neural activity in DLS and MC more accurately than measurable 
features of movement or alternative control functions is consistent with 
these regions taking part in implementing inverse dynamics.

We believe that the improvements in predictivity relative to represen-
tational models result from incorporating bodily dynamics, including 
the influences of gravity, friction, inertia and interactions between 
body parts. Note, however, that one should ostensibly be able to find 
a combination of measurable representational features that predicts 
neural activity as well as our models. In fact, this is what our models 
do. They learn a nonlinear function, parametrized by a neural network, 
that transforms the kinematics of desired future movements into the 
dynamics required to achieve those kinematics. The network does this 
by encoding the physical realities of bodily control in its weights; that is, 
it learns an inverse dynamics model. There are at least two main advan-
tages of our approach relative to approaches based on representation. 
First, the models we train are causal—they are sufficient to physically 
reproduce the behaviour of interest as opposed to merely describing 
it. Second, they place the emphasis on identifying the functions that 
brain regions implement as opposed to merely describing the flow of 
information.

Previous work in brain–machine interfaces58 and oculomotor con-
trol59 has similarly related neural activity in the motor system to inverse 
dynamics models. Our work extends these findings to the domain of 
full-body control and across a diverse behavioural repertoire. We note 
that a neural code consistent with inverse dynamics could reflect and 
support other processes, including motor learning60 or even different 
control functions. However, in our experiments, models trained to 
implement forward dynamics and sequential forecasting did not fare 
as well in predicting neural activity structure (Extended Data Fig. 9a–f), 
although we note that these controls may differ from internal models 
(such as state estimation, forward dynamics models and so on) imple-
mented in a composite controller6. In future work, a more comprehen-
sive understanding of the relationship between control functions and 
neural activity structure could be achieved by comparing the network 

activations of such composite controllers to neural recordings in brain 
regions believed to implement different internal models.

Although noise is inherent to biological control, how the nerv-
ous system deals with it to ensure robustness and flexibility remains 
unclear61. The minimal intervention principle speaks to this, explain-
ing that controllers quench movement variability along dimensions 
relevant to performance7,51. By leveraging stochastic ANN controllers 
(Fig. 2a), the virtual rodent allowed us to study the relationship between 
network variability and variability in motor output. Intriguingly, we 
found that the virtual rodent ‘brain’ regulated its latent variability to 
control action variability in accordance with the minimal intervention 
principle7 (Fig. 5). The structure of variability emerged from training 
the network to balance latent variable compression, implemented to 
support generalization and the ability to faithfully imitate over the 
training set (Supplementary Discussion 2). Thus, managing the tradeoff 
between latent variable compression and motor performance25,56 may 
structure neural variability in ways that are distinct from previously 
hypothesized mechanisms like signal-dependent noise54 or energy 
constraints7. Together, these results show a link between a computa-
tional mechanism for generalization (latent variable compression) and 
one for robustness in control (structured variability). That the virtual 
rodent’s latent variability predicts the structure of neural variability 
across behaviours in DLS and MC (Extended Data Fig. 9g–i) further 
indicates that the brain may structure neural variability in accordance 
with these principles.

More generally, our results demonstrate how artificial controllers 
actuating biomechanically realistic models of animals can help uncover 
the computational principles implemented in neural circuits control-
ling complex behaviour. We believe the potential of this approach is 
significant and untapped. Virtual animals trained to behave like their 
real counterparts could provide a platform for virtual neuroscience 
to model how neural activity and behaviour are influenced by vari-
ables like feedback delays, latent variability and body morphology that 
would otherwise be difficult or impossible to experimentally deduce. 
Inverse dynamics models trained to reproduce diverse and realistic 
behaviours could also be re-used as low-level modules to promote 
naturalistic movement in neural networks trained to autonomously 
perform tasks, including those common in neuroscience research3,4. 
Similarly, because the ANNs controlling the virtual rodent are fully 
configurable, future iterations could aim to implement brain-inspired 
network architectures to improve performance and interpretability 
and probe the roles of specific circuit motifs and neural mechanisms 
in behaviourally relevant computations.
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Methods

Data acquisition
Animals. The procedures involved in the care and experimental mani-
pulation of all animals were reviewed and approved by the Harvard 
Institutional Animal Care and Use Committee. Experimental subjects 
included seven female Long Evans rats, aged 3–12 months at the start 
of recording (Charles River).

Behavioural apparatus. Animals moved freely in a cylindrical arena 
1 m in diameter elevated on a custom-made wooden table. The circular 
base of the cylinder was made of green high-density polyethylene cut-
ting board. The walls were 60 cm tall and made of a 1-mm-thick clear 
polycarbonate sheet. The arena was surrounded by a commercial green 
screen to improve contrast between the animals and their surround-
ings. The arena was illuminated by two white light-emitting diode arrays 
(Genaray SP-E-500B, Impact LS-6B stands) to aid kinematic tracking. 
To encourage movement, three to six Cheerios were hung around the 
arena using pieces of string such that they were within reach of the 
rats when rearing.

Videography. Six high-speed 2 MP Basler Ace-2 Basic cameras 
(a2A1920-160160ucBAS) were equipped with 8 mm lenses (Lens  
Basler 8 mm, C23-0824-5M, 2/3”, f/2.4, 5 MP) and placed surrounding 
the arena at regular intervals approximately 1.2 m from the centre. 
Cameras were stabilized with SLIK PRO 700DX tripods. All camera 
shutters were controlled synchronously by a 50 Hz Arduino hardware 
trigger by means of Phoenix Contact Sensor/actuator cables (SAC-6P-M 
AMS/3.0-PUR SH - 1522309). Images were transmitted by means of 
Basler USB 3.0 cables to an acquisition computer equipped with an 
Intel Core i9-9900K processor, an NVIDIA Quadro P4000, an NVIDIA 
Geforce GTX 1550 Super and a Samsung 970 Evo M.2 solid-state drive. 
We used the Campy camera acquisition software suite to encode videos 
from all cameras in real time35.

Calibration. Cameras were calibrated using tools from the MAT-
LAB 2020b (https://www.mathworks.com/downloads/web_down-
loads/) and OpenCV-Python (v.4.4.0.46) (https://pypi.org/project/
opencv-python/#history) camera calibration libraries. For intrinsic 
calibration, we used the MATLAB Single Camera Calibrator App with a 
checkerboard calibration pattern to estimate the camera parameters 
for each camera individually. For extrinsic calibration, we placed the 
same checkerboard used for intrinsic calibration in the centre of the 
arena, took a picture from all cameras, detected checkerboard cor-
ners in all images using the functions in OpenCV-Python calibration 
library and estimated the rotation and translation vectors for each 
camera using MATLAB’s extrinsic calibration functions. Calibrations 
were checked periodically to ensure that the cameras had not been 
accidentally disturbed between recordings. In practice, we found the 
recording apparatus to be stable enough that calibrations would remain 
accurate for months at a time.

Electrophysiology. Microdrive construction and surgical procedures 
for tetrode implantation followed previously described protocols62, 
with slight modifications to accommodate 128-channel record-
ings. Notably, an array of 32 tetrodes was manually connected to a 
custom-designed headstage (made of two RHD2164 ICs from Intan 
Technologies), rather than the 16 tetrodes used in previous designs. All 
implants were in the right hemisphere. Target coordinates were 0 mm 
anterior–posterior, +4.25 mm mediolateral, −4 mm dorsoventral for 
the DLS and +1 mm anterior–posterior, +1 mm mediolateral, −1 mm 
dorsoventral for MC relative to bregma. MC targets were chosen to 
match the median recording location of MC recordings by ref. 36. In 
one MC implant, the target site was moved by approximately +1 mm 
anterior–posterior and +1 mm mediolateral to avoid a blood vessel. 

We occasionally lowered the drive by approximately 80 μm, 0–4 times 
over the course of the experiments. Recordings were conducted using 
the Intan RHX2000 acquisition software. Electrophysiological and 
video data were synchronized by passing the video hardware trigger 
signal through the acquisition field-programmable gate array (Opal 
Kelly XEM6010, Xilinx Spartan-6 field-programmable gate array) that 
interfaced with the headstage. One animal implanted in MC yielded no 
neurons and was thus excluded from electrophysiological analyses.

Recording protocol. Single-housed rats were manually placed in 
the arena at the beginning of a recording session and left alone and  
undisturbed for 2 or 3 h. All recordings were performed in the absence 
of experimenters in a closed room with minimal noise and began at 
approximately the same time every day. Animals were recorded daily 
for a minimum of 28 days and a maximum of 63 days. The arena floor 
and walls were cleaned with 70% ethanol after every recording session 
and allowed to dry for at least 30 min before further use. In total, the 
dataset spans 607 h of simultaneous electrophysiology and videogra-
phy (353.5 h DLS and 253.5 h MC).

Histology. At the end of the experiment, we performed an electro-
lytic lesion of the recording site by passing a 30 μA current through 
the electrodes. For two animals implanted in MC, we were unable to 
perform a lesion as the headstages came off unexpectedly. The loca-
tion of these implants was verified on the basis of scarring caused by 
the implant. After lesioning, animals were euthanized (100 mg kg−1 
ketamine; 10 mg kg−1 xylazine) and transcardially perfused with 4% 
paraformaldehyde in 1× phosphate buffered saline. We then extracted 
the brains and placed them in 4% paraformaldehyde for 2 weeks. Brains 
were sectioned into 80 μm slices using a vibratome (Vibration Company 
Vibratome 1500 Sectioning System), and the slices were mounted on 
microscope slides and stained with Cresyl-Violet. We imaged the slides 
using an Axioscan slide scanner and localized the recording site by the 
electrolytic lesions.

Data processing
3D pose estimation. We used DANNCE v.1.3 to estimate the 3D pose 
of the animal over time from multicamera images. Pose estimation 
with DANNCE consists of two main steps: CoM detection and DANNCE 
keypoint estimation.
CoM network training. We used Label3D35 to manually label the rat 
CoM from multicamera images in 600 frames spanning three animals. 
Frames were manually selected to span the range of locations and 
poses animals assume when in the arena. CoM networks were trained 
as described previously35.
DANNCE network training. We again used Label3D to manually label 
the 3D positions of 23 keypoints along a rat’s body. The dataset con-
sisted of over 973 frames manually selected to sample a diverse range 
of poses from four different animals over eight different recordings. We 
finetuned a model previously trained to track keypoints in the Rat7M 
(https://doi.org/10.6084/m9.figshare.c.5295370.v3) dataset on our 
training set, as in earlier work35. Notable modifications to this proce-
dure included two methods for data augmentation and a modified loss 
function. The first data augmentation method is mirror augmentation, 
which effectively doubles the dataset size by inverting the 3D volumes 
generated from multicamera images along the x axis (parallel to the 
ground) and swapping the 3D positions of bilaterally symmetric key-
points. The second is view augmentation, which randomly permutes 
the order that images from different cameras are fed into the network. 
Finally, we used an L1 loss function rather than the original L2 loss. We 
include a list of relevant DANNCE parameter specifications in Sup-
plementary Table 2.
Evaluation. DANNCE performance was quantified using a dataset of 50 
manually labelled frames randomly selected from a recording session 
that had not been included in the training set. To estimate intralabeller 
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variability, the same 50 frames were re-labelled by the same person one 
month after the initial labelling. We report the keypoint error between 
manual labels and DANNCE predictions up to a Procrustes transforma-
tion without scaling.
Compute resources. CoM and DANNCE models were trained and evalu-
ated using computational resources in the Cannon High Performance 
Cluster operated by Harvard Research Computing. These included a 
mixture of NVIDIA hardware including GeForce GTX 1080 Ti, GeForce 
RTX 2080 Ti, Tesla V100, A40 and A100 Tensor Core graphics process-
ing units.

Skeletal model. We previously developed a skeletal model of a rat that 
matches the bone lengths and mass distribution of Long Evans rats1. 
The model has 74 DoF and defines parent-child relationships between 
body parts through an acyclic tree that starts with the root (similar 
to the CoM) and branches to the extremities. The pose of the model 
consists of three Cartesian dimensions specifying the position of the 
root in space, four dimensions specifying the quaternion that captures 
the orientation of the model relative to the Cartesian reference and 67 
dimensions that specify the orientations of child body parts relative to 
their parent’s reference frame. The model has 38 controllable actua-
tors that apply torques to specific joints. To help imitate rearing, we 
increased the range of motion of the ankle and toe joints to [−0.1, 2.0] 
and [−0.7, 0.87] radians. The model is equipped with a series of sensors, 
including (1) a velocimeter, (2) an accelerometer, (3) a gyroscope and 
(4) force, torque and touch sensors on its end effectors.

Skeletal registration. We used a custom implementation of STAC44 
to register the skeletal model to the DANNCE keypoints. Briefly, STAC 
uses an iterative optimization algorithm to learn a set of 3D offsets 
that relate different sites along the skeletal model to DANNCE key-
points (m-phase), as well as the pose of the model that best reflects the 
keypoints at each frame given the set of offsets (q-phase). To ensure 
consistent relationships between keypoints and model sites across  
different poses, the offsets corresponding to keypoints closest to a 
body part were expressed in the reference frame of the parent body part.

In the m-phase, we optimize the offsets using L-BFGS-B over a dataset 
of 500 frames to minimize the mean-squared error between the true 
keypoints and fictive keypoints derived from applying the offsets to the 
posed model. In the q-phase, we optimize the pose of the model using 
least-squares optimization over the same set of frames to minimize the 
same objective while keeping the offsets fixed. At each step of the pose 
optimization, we reposition the model and compute new positions of 
the fictive offsets by means of forward kinematics in MuJoCo.

As the dataset totalled 607 h of data sampled at 50 Hz, the registra-
tion algorithm needed to be efficient. To speed up the q-phase, we 
separately optimized the pose of different body parts rather than 
optimizing over the full-body pose. First we initialize the model’s root 
position as the position of the middle spine keypoint and optimize only 
the seven DoF specifying the Cartesian position and quaternion of its 
root. We next optimize the quaternions of the root, trunk and head to 
match keypoints along the head and trunk of the animal. Finally, we 
individually optimize each limb. In subsequent frames, we initialize 
the model’s pose using its pose in the previous frame.

For each animal, we independently estimated the offsets using the 
procedure described above. We accounted for differences in animal 
size by isometrically scaling the model by a scaling factor manually 
determined by means of a visual comparison of models overlain on 
images of the rats. We found this procedure to be more robust and 
faster and to produce comparable results to a direct optimization of the 
scaling factor when learning offsets. In practice, we found that running 
the iterative optimization three times produced reasonable offsets 
that could be used to estimate the skeletal pose in new keypoint data.

To infer the skeletal pose of an entire recording session, we ran the 
q-phase optimization a final time using the set of offsets learned during 

training. To improve inference speed, we divided the session into con-
tiguous 20 s chunks and ran the q-phase optimization in parallel on 
Harvard Research Computing’s Cannon High Performance Cluster.

Behavioural segmentation. We automatically identified stereotyped 
behaviours throughout our recording sessions using an unsupervised 
feature extraction and clustering approach described previously40–43. 
We extracted a high-dimensional feature vector capturing the multi-
scale dynamics of the animal’s keypoints over time. The vector was 
composed of three types of features. The first was the height of the 
keypoints from the floor, smoothed using a 60-ms-median filter. The 
second was the keypoint velocities, estimated using the finite differ-
ences method on smoothed (100-ms-median filter) keypoint trajecto-
ries. The third was a multiscale time-frequency decomposition of the 
rat’s pose, obtained by computing a pairwise distance matrix between 
keypoints for all frames in the smoothed keypoint trajectories, decom-
posing the matrix into its top 20 principal components and applying 
a continuous wavelet transform to each principal component with 
frequencies ranging from 0.5 to 20 Hz.

To aid in identifying diverse stereotyped behaviours, we imple-
mented a sampling and clustering procedure. For each session, we 
subsampled the feature vector by a factor of 20 and embedded it into 
a two-dimensional space using t-distributed stochastic neighbour 
embedding. We next clustered the resulting space using hierarchi-
cal watershed clustering and uniformly sampled 500 samples across 
the clusters. Samples from each session were compiled into a single 
set and clustered to automatically assign behavioural categories to 
individual frames using k-means clustering (K = 100). The resulting 
cluster centroids were then used to classify the remaining frames in 
the original dataset.

Spike sorting. For each animal, the raw neural data from all sessions 
was sorted using an improved implementation of Fast Automated 
Spike Tracker (FAST)62. Although most the sorting process remains 
unchanged between the implementations, there are three relevant 
modifications.
Feature extraction. We applied a β-distribution (β = 100) weighting 
transform to the spike waveforms to more heavily weigh the values 
near the spike peak. We next spectrally decomposed the waveforms 
using a discrete wavelet transform with a Symlets 2 wavelet. Finally, 
we applied principal components analysis on the wavelet coefficients, 
retaining only the first ten components.
Clustering. We identified putative single units using ISO-split63 rather 
than superparamagnetic clustering. We used an iso-cut threshold of 
0.9, a minimum cluster size of 8, 200 initial clusters and 500 iterations 
per pass.
Linking. To sort our long-term recordings, we clustered the feature- 
transformed data spanning chunks of approximately 1 h using ISO-split 
and linked clusters across chunks using a variation of the segmen-
tation fusion algorithm detailed in FAST. The relevant modification 
was using the Komolgorov-Smirnov criterion from ISO-split to link 
similar neurons across recording sessions.

Criteria for unit selection. After manual curation, we used several 
summary statistics to further assess the quality of putative single units. 
For encoding analyses, we excluded units with an isolation index62 
less than 0.1 and a proportion of interspike interval violations greater 
than 0.02. For single-unit analyses, we excluded units with average 
firing rates less than 0.25 Hz and a total recorded duration that failed 
to span the entirety of the session in which they were measured. For 
population analyses, we excluded units with average firing rates less 
than 0.05 Hz and those with total recorded durations that failed to 
span the entirety of the session in which they were measured (2,092 
putative single units, 1,249 DLS, 843 MC). For all analyses, spike times 
were binned into 20 ms bins.



Model training
Training set. The training data for MIMIC controllers consists of 
contiguous trajectories of a high-dimensional state vector describ-
ing the real animal’s movement. Features in this vector were derived 
from the skeletal registration and are as follows: freejoint Cartesian 
position, root quaternion, joint quaternions, CoM, end effector Car-
tesian position, freejoint velocity, root quaternion velocity, joint 
quaternions velocity, appendage Cartesian positions, body Cartesian 
positions and body quaternions. Velocities were estimated with the 
finite differences method.

We automatically identified a collection of 5 s clips containing a wide 
range of behaviours spanning our behavioural embedding. We found 
it necessary to prioritize behaviours in which the animal was moving 
to prevent the model from converging to local minima where it would 
remain still. We visually verified the quality of each clip by removing 
clips in which the animal did not move or seemingly assumed physically 
implausible poses from errors in tracking or registration. In the end we 
used a dataset of 842 clips.

Imitation task. We used an imitation task similar to previous works on 
motion capture tracking5,64,65 and most closely resembling CoMic3. The 
task has four main considerations: initialization, observations, reward 
function and termination condition.
Initialization. Episodes were initiated by randomly selecting a starting 
frame from the set of all frames across all clips, excluding the last ten 
frames from each clip. The pose of the rat model was initialized to the 
reference pose in the selected frame.
Observations. The model received as input a combination of proprio-
ceptive information, motion and force sensors and a reference trajec-
tory. These include the actuator activation, appendage positions, joint 
positions, joint velocities, accelerometer data, gyroscope data, touch 
sensors at the hands and feet, torque sensors at the joints, velocimeter 
data, tendon position, tendon velocities and the reference trajectory. 
The reference trajectory is defined as the set of states visited by the 
real animal in a short time window ranging from 20 to 200 ms in the 
future (most models had a time window duration of 100 ms). At each 
timepoint, the kinematics of the reference trajectory was represented 
relative to the current state of the model in Cartesian and quaternion 
representations. Given the short timescales of the reference trajec-
tory, we believe our models are most appropriate for interpreting the 
short-timescale dynamics involved in motor control, rather than the 
long-term organization of behaviour.
Reward functions. As in previous work on motion capture tracking3,5,64, 
we treat the imitation objective as a combination of several rewards 
pertaining to different kinematic features. The rewards consist of four 
terms that penalize deviations between the reference trajectory and 
the model’s kinematics and one term that regularizes actuator forces.

The first term, rcom, penalizes deviations in the positions of the CoM 
between the reference and model:

∥ ∥r p p= exp(−100 − )com com com
ref 2

where pcom and pcom
ref  are the CoM positions for the model and reference, 

respectively. Only spatial dimensions parallel to the ground were 
included to avoid the ambiguity in CoM height between isometrically 
scaled versions of the model used for skeletal registration and the 
unscaled versions of the model used in training.

The second term, rvel, penalizes deviations in the joint angular velo-
cities between the reference and model:

∥ ∥r q q= exp(−.1 − )vel vel vel
ref 2

where qvel and qvel
ref are the joint angle velocities of the model and refer-

ence, respectively, and the difference is the quaternion difference.

The third term, rapp, penalizes deviations in the end effector append-
age position between the reference and the model:

r p p= exp(−400 − )app app app
ref 2∥ ∥

where papp
 and papp

ref  are the end effector appendage positions of the 
model and reference, respectively.

The fourth term, rquat, penalizes deviations in the root quaternions 
of the model and reference:

∥ ∥r q q= exp(−2 − )quat quat quat
ref 2

where qquat
 and qquat

ref  are the root quaternions of the model and refer-
ence, respectively.

The fifth term, ract, regularized the actuator forces used across the 
agent’s actuators:
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where D is the number of controllable actuators and ai is the actuator 
force of the ith actuator
Termination condition. Episodes were automatically terminated when 
the model’s movements substantially deviated from the reference. 
Specifically, episodes terminated when

τ
b b q q1 −

1
( − + − ) < 0pos pos

ref
1 pos pos

ref
1∥ ∥ ∥ ∥

where τ corresponds to the termination threshold, bpos and bpos
ref  cor-

respond to the body positions of the model and reference and qpos
 and 

qpos
ref  correspond to the joint angles of the model and reference, with 

the difference being the quaternion difference. We used a τ value of 
0.3 in all experiments.
Training. Models were trained using several objective value maxi-
mum a posteriori policy optimization (MO-VMPO)66. In this setting, 
MO-VMPO trains a single policy to balance five objectives correspon-
ding to each of the five reward terms. The relative contribution of  
each objective is specified by a vector, ϵ, with a single element per  
objective. We set ϵ = 0.01com , ϵ = 0.01app , ϵ = 0.01vel , ϵ = 0.01quat  and  
ϵ = 0.0001act . For all models, we used a batch size of 256, an unroll  
length of 20 and a discount factor of 0.95. In the MO-VMPO E-steps, we 
use the top 50% of advantages67. In the policy distillation step, we set 
the Kullback–Liebler bounds for the policy mean to 0.1 and the  
Kullback–Liebler bounds for the policy covariance to 1 × 10−5. We initial-
ized all Lagrange multipliers in MO-VMPO to 1, with minimum values 
of 1 × 10−8. We used Adam68 for optimization with a learning rate of 
1 × 10−4. Models were trained using 4,000 actors, 32 cachers and a TPUv2 
chip. A typical model trained for 2–3 days.

Model architectures
An overview of model architectures is included in Supplementary 
Table 3.

Reference encoder. All architectures featured the same reference  
encoder. We used the reference trajectory for the following five 
timesteps and proprioceptive observations at the current timestep 
as inputs to the reference encoder. The encoder consisted of a two-layer 
densely connected multilayer perceptron (MLP) with 1,024 hidden units 
in each layer and hyperbolic tangent activation functions, using layer 
norm. The final layer of the encoder produced two 60-dimensional 
vectors that were passed through linear activation functions to  
respectively parametrize the mean, μ, and log standard deviation, σ, 
of the stochastic latent representation.

MLP value function. For MLP networks, the critic was composed of a 
two-layer MLP with 1,024 hidden units, followed by one more one-layer 
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MLP for each objective. It received the same inputs as the reference 
encoder.

LSTM value function. For long short-term memory (LSTM) networks, 
the critic was composed of a single LSTM with 512 hidden units, followed 
by one more one-layer MLP for each objective. It received the same 
inputs as the reference encoder.

Latent regularization. As in CoMic3, we append a further Kullback–
Liebler divergence (KL) loss term to the MO-VMPO policy distillation 
objective that regularizes the latent embedding using a standard Gauss-
ian prior,

N∣ ∥β KL z s s I[ (π( , ) (0, ))]π t t t
refE

with the scalar parameter β controlling the strength of the regulariza-
tion, zt indicating the latent at time t, st indicating the state at time t, 
and st

ref indicating the state of the reference trajectory at time t. We 
also impose a one-step autoregressive prior, AR(1), described by

Nz αz σϵ ϵ I= + , ~ (0, )t t+1

where α is the contribution of the autoregressive term, and ∼ indicates 
‘distributed as’. For models with autoregressive priors, we use α to 0.95, 
and for those without autoregressive priors, we set α to 0.

MLP decoder. The MLP decoder was composed of a two-layer MLP 
with 1,024 hidden units.

LSTM decoder. The LSTM decoder was composed of two stacked 
LSTMs with 512 and 256 hidden units, respectively.

Action type. We trained models with two types of actions. The first was 
position-controlled action, in which model outputs denoted the desired 
position of each controllable actuator. The forces required to achieve 
those positions were then computed by means of inverse kinematics 
to actuate the model appropriately. The second was torque-controlled 
action, in which the model directly produced torques at each actuator.

Reference trajectory duration. In one experiment (Extended Data  
Fig. 3g,h), we trained five inverse dynamics models that varied in the 
duration of the reference trajectory (20, 40, 60, 100 or 200 ms). The 
models all featured torque actuation, a LSTM decoder and a Kullback–
Liebler regularization coefficient of 1 × 10−4.

Body modifications. In two separate experiments (Extended Data  
Figs. 7 and 8), we trained inverse dynamics models to control modified 
versions of the virtual rodent body. These modifications were designed 
to influence the dynamics of movement without requiring changes in 
the kinematics of movement. In a ‘mass scaling’ experiment, we uni-
formly scaled the masses of all body parts of the virtual rodent body 
from half to twice the standard mass. In a ‘relative head scaling’ experi-
ment, we scaled the mass of the head relative to the mass of the rest of 
the body from half to twice the standard ratio. In both experiments, 
we trained inverse dynamics models with torque actuation, a LSTM 
decoder and a Kullback–Liebler regularization coefficient of 1 × 10−4 to 
control the different modified bodies and evaluated their performance 
on held-out data controlling the bodies on which they were trained.

Model inference
Rollout. To evaluate the models on new data, we used the postural 
trajectories obtained from STAC as reference trajectories. At each 
frame, the model would accept its current state and the reference tra-
jectory for the following frames and generate an action. After applying 
forward kinematics, this action would result in the state at the next 

frame, closing the sensorimotor loop. In the initial frame, the model’s 
state was initialized to the state of the real animal. For the encoding 
and representational similarity analyses, we disabled the noise at the  
action periphery and the sampling noise in the stochastic latent space. 
For analyses of the model’s latent variability, these sources of noise 
remained enabled.

At each frame, we recorded physical parameters related to the 
model’s state, activations of several layers of the ANN controllers and 
the fictive reward. The physical parameters included STAC-estimated 
keypoints, quaternion forces experienced at all joints, quaternion 
positions, velocities and accelerations and the cartesian positions of 
all joints. The recorded ANN layers included the latent mean and log 
standard deviation, the latent sample, all LSTM hidden and cell states 
and the action.

To aid in comparing the network’s activity to neural activity, we main-
tained the termination condition used during training. This decision 
had two effects. First, it maintained that the model’s behaviour was 
within a reasonable range of the true behaviour. Second, it ensured 
that the state inputs to the model were within the distribution observed 
during training and thus prevented the network activity from behav-
ing unpredictably. For all analyses, we excluded the 0.2 s preceding or 
following initialization or termination frames.

As this rollout process is serial and limited by the speed of the physi-
cal simulation, evaluating long sessions is time consuming. To improve 
inference speed, we divided all recordings into 50 s chunks and evalu-
ated models on each chunk in parallel, using one central processing 
unit core per chunk.

Alternative control models
To compare the structure of neural activity across behaviour to func-
tions other than inverse models, we use a dataset of state–action 
pairs obtained from MIMIC model rollouts when imitating natural 
behaviour to implement forward and sequential forecasting models 
in ANNs using supervised learning (Extended Data Fig. 10a–f). States 
were parametrized by the model’s quaternion pose, whereas actions 
were parametrized by the model’s action. Forward models were trained 
to predict the sensory consequences of motor actions, transforming 
the state and action for the current frame into the state of the next 
frame. Sequential forecasting models were trained to predict future 
states from past states. We varied the number of frames spanning the 
past-state vector from one to five to test the influence of longer context 
while maintaining parity with the window size of the inverse models.

The encoders and decoders for both models were composed of mul-
tilayer perceptrons with three hidden layers of 1,024 units each, with 
leaky rectified linear unit activation functions69. All models featured 
β-weighted conditional latent bottlenecks of equal dimensionality 
to those of the inverse dynamics models (60), with a β value of 0.01. 
The objective was to minimize the mean-squared error of the target.

Although we believe that comparisons to models trained by means 
of supervision is valuable, it is possible that the representations of 
models trained by means of reinforcement to implement alternative 
control functions may differ from those trained through supervision. 
This question could be resolved in future work by means of the integra-
tion of several control functions into composite controllers trained by 
means of reinforcement.

Encoding analyses
Feature set. We used Poisson GLMs with a log link function70 to predict 
the spiking of putative single units in DLS and MC from measurable 
movement features, features inferred from physical simulation in  
MuJoCo and the activations of ANN inverse controllers. The measurable 
features included aligned 3D keypoint positions and velocities and joint 
angular positions and velocities, spanning the entire body. Dynamic 
features inferred from MuJoCo included the forces experienced at each 
joint and accelerometer, velocimeter and touch sensors. Finally, the 



ANN activations included the activations of every layer of the inverse 
dynamics models, considered independently.

To ensure that the models were trained to predict movement-related 
activity rather than activity during sleeping or resting, we focused 
only on frames in which animals were moving. To estimate moving 
frames, we smoothed the keypoint velocities estimated by means of 
finite differences with a five-frame median filter and identified frames 
in which the average smoothed keypoint velocity was above a thresh-
old of 0.07 mm per frame. We then estimated sleeping frames as the 
set of frames resulting from the application of 20 iterations of binary 
closing (binary erosion followed by binary dilation) and 500 iterations 
of binary opening (binary dilation followed by binary erosion) to the 
vector of non-moving frames.

For all features, we used data from a temporal window containing the 
five surrounding samples to predict the number of spikes in a given bin. 
In general, increasing the window size improved model predictivity up 
until five frames. We also trained models over a range of offsets (−1,000 
to 300 ms in 100 ms intervals) that shifted the temporal relationship 
of neural activity relative to each feature.

Regularization. As many of the features are high-dimensional, we took 
several steps to counter overfitting. First, we used principal compo-
nents analysis to decrease the effective dimensionality of our feature 
sets, retaining only the components required to explain 90% of the vari-
ance in the temporal windows for each feature. To further address over-
fitting, we used elastic net regularization with an L1 weight of 0.5 and 
an α value of 0.01. Qualitatively, results were not sensitive to changes 
in these parameter choices.

Cross validation. We trained GLMs using a fivefold cross-validation 
scheme. We first divided the spiking, movement and ANN data span-
ning the duration of a unit’s recording into 4 s chunks that were ran-
domly distributed into ten folds. We trained GLMs using training data 
from nine of the folds and evaluated their performance on testing data 
from the remaining fold, training a single model for each combination 
of training and testing sets. We use the cross-validated log-likelihood 
ratio (CV-LLR) and deviance-ratio pseudo-R2 to quantify model pre-
dictivity, the performance of a model in predicting spike counts in 
the testing set.
Hypothesis testing. We defined the most predictive feature for a given 
unit as the feature with the highest average CV-LLR. To identify units for 
which the features had low predictivity, we used a one-sided Wilcoxon 
signed-rank test to assess whether the CV-LLRs for each unit and each 
feature sufficiently deviated from zero. Units with a confidence score 
greater than 0.05 with Bonferroni correction for several comparisons 
were labelled as unclassified.

Representational similarity analysis
We used RSA to compare the representational structure of neural 
activity in DLS and MC across behaviours to measurable features 
of movement, dynamic features inferred from physical simulation 
and the activations of ANN inverse controllers. RSA consists of three 
broad steps: feature vector estimation, RDM estimation and RDM 
comparison.

Feature vector estimation. We first applied principal components 
analysis to each feature, retaining only the components required to 
explain 95% of the total variance. For each session, we used the behav-
ioural labels from our automated behavioural segmentation, applied 
a 200 ms iterative mode filter to mitigate short-duration bouts and 
divided samples from each feature into behavioural categories. To 
eventually achieve an unbiased estimate in the dissimilarity between 
behavioural categories for a given feature, we divided data into two 
partitions for each behaviour, with odd instances of the behaviour 
comprising the first partition and even instances of the behaviour 

comprising the second partition. For each partition, we computed the 
average feature vector across all samples.

We excluded frames in which the animal was sleeping and frames in 
the 40 samples surrounding the initiation or termination of the model’s 
imitation episodes. We only included sessions in which a minimum of 
10 simultaneously recorded neurons were present throughout the 
entire duration of the session, sessions in which a minimum of 70% of 
the total behavioural categories were expressed and sessions in which 
there was a minimum of 30 min of movement.

RDM estimation. We used rsatoolbox 3.0 to perform RDM estimation 
using the cross-validated squared Mahalanobis distance (crossnobis 
dissimilarity)71–73 with the feature vectors from the behavioural parti-
tions described above. This produces a RDM for each feature and each 
session. Although the models’ conditional latent bottlenecks naturally 
indicate calculation of RDMs using distance metrics for distributions, 
such as the symmetric Kullback–Liebler divergence, it was challenging 
to compare these metrics across features for which we do not have 
parametrized probability distributions. Thus, we chose to separately 
analyse the latent means and scales, as well as all other features, using 
crossnobis dissimilarity.

RDM comparison. For each feature, we computed the average RDM 
across sessions and compared RDMs across features and subjects using 
the whitened unbiased cosine similarity71,72.

Motor variability analyses
Estimating instantaneous motor variability. We modified the nor-
mal inference procedure to estimate the instantaneous motor vari-
ability of the model at each timestep. Rather than disabling the latent 
variability, we generated 50 latent samples from the latent distribu-
tion at each frame. We then evaluated the decoder for each sample to 
estimate the distribution of actions that emerged from a given latent 
distribution. We use the standard deviation across the distribution of 
actions for each actuator as the instantaneous estimate of actuator  
variability.

To assess the significance of the predictivity of action variability 
and latent variability on behaviour, we performed a permutation test. 
For each of 1,000 iterations, we trained a logistic regression classifier 
using balanced class weights to predict the behavioural category from 
the vector of action standard deviations or latent standard deviations 
at each timepoint. We also trained another logistic regression classi-
fier using randomly permuted category labels. The performance of 
both classifiers were evaluated with fivefold cross validation, using 
the class-balanced accuracy as a performance metric.

Variability perturbations. We further modified the inference proce-
dure to perturb the structure of latent variability. Our perturbation 
involved varying the structure of the latent variability and clamping 
the total variability of the latent space at each timepoint. We consid-
ered three different structures for the latent variability. The first was 
a standard variability structure, in which no changes were made to the 
latent distribution. The second was a uniform variability structure in 
which each dimension of the latent space was set to equal variance for 
every frame. The third was an inverted variability structure that was con-
structed as follows. In each frame, the latent dimensions were ranked 
according to their latent standard deviation. The standard deviations 
were then reassigned in inverse rank order such that the dimensions 
with the highest variability were assigned low variability and vice versa. 
To clamp the variability at a particular noise level, we multiplied the 
transformed latent variability vector by a scalar value such that the 
total variability across all dimensions in the latent space equalled the 
desired noise level for every frame of the simulation.

To evaluate the performance of models undergoing variability per-
turbations, we defined a fictive reward term to combine the several 



Article
MO-VMPO objectives into a single scalar value. The fictive reward was 
adapted from objective functions in previous work3 and was defined by 

r r r r0.4 + 2 + 0.15 + 0.35com vel app quat

Estimating instantaneous neural variability. Although the parametri-
zations of variability in latent variable models can be easily recorded, 
directly measuring instantaneous variability in neural activity is not 
possible. To approximate a measure of instantaneous neural variability, 
we computed a sliding-window variance estimate using a 1 s window on 
the binned spike counts of each neuron. In lieu of more sophisticated 
approaches that can estimate latent variability structure of neural 
populations across behaviour and at the months-long recording scale, 
we believe that our approach serves as a reasonable approximation of 
neural variability structure.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data generated from real animals are publicly available on Harvard 
Dataverse, https://doi.org/10.7910/DVN/FB0MZT. To help us under-
stand use, provide support, fulfil custom requests and encourage col-
laboration, we ask that users contact us when considering using this 
dataset. Because of their size, the data generated in simulation will be 
made available on reasonable request.
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Code for all analyses will be made available from the correspond-
ing authors on reasonable request. Repositories for skeletal regis-
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inverse dynamic model inference are available at https://github.com/ 
diegoaldarondo/virtual_rodent.
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Extended Data Fig. 1 | Recording neural activity in freely behaving rats.  
A) Schematic of custom 128-channel tetrode drive. B, Tetrodes record 
electrical events of several putative neurons from the DLS or MC. Shown are 
recordings from a tetrode in DLS. C) Individual putative cells are extracted 
based on their unique spike waveforms using a custom spike-sorting software, 
FAST. D) Tetrodes allows for the recording of hundreds of putative single units 
simultaneously. E-F) Representative examples of Nissl-stained brain slices 
from animals with electrophysiological implants in DLS and MC. Red ellipses 
indicate the lesions remaining from the tetrode implants. G, Dorsal view 

denoting the position of implants for DLS and MC. The position of the implant 
with the dashed circle could not be verified with histology as the recording 
headstage was dislodged prior to electric lesion. The position was instead 
estimated using scarring at the cortical surface and the recorded depth of 
implantation. The other implants were verified with electric lesions or scarring 
from the implant tip. H) Coronal plane indicating the location of implants in the 
DLS across 3 animals. I) Coronal plane indicating the location of implants in MC 
across 3 animals.
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Extended Data Fig. 2 | High fidelity 3D pose estimation and skeletal 
registration. A) In DANNCE, a 3D U-Net processes multi-view images to 
estimate the positions of 23 3D keypoints across the rat’s body. B, DANNCE 
keypoint estimates show high concordance with manual annotations, deviating 
from manual labels to a similar degree as repeated manual annotations of the 
same testing frames. C) Visualization of median DANNCE keypoint discrepancy 
relative to manual annotation. Grey circles indicate the bounds of the sphere 

with radius equal to the median keypoint discrepancy for each keypoint.  
D) Schematic depicting the relevant variables in STAC. STAC operates by jointly 
optimizing a set of offsets relating the skeletal model to different keypoints 
and the pose of the model in each frame. E) STAC registration is highly accurate 
across body parts and F) across different behaviours. For all boxplots in this 
figure, coloured lines indicate the median, boxes indicate the interquartile 
range, and whiskers indicate the 10th and 90th percentiles.



Extended Data Fig. 3 | Comparing imitation performance for held-out data 
across different classes of control networks. A) The proportion of episodes 
exceeding a given duration for the four classes of controllers. Results for each 
class are averaged across models with all KL regularization coefficients for that 
class. B, Violin plots showing the distribution of rewards by each model class on 
the held-out testing set. Models with LSTM decoders outperform other classes. 
C) Average reward as a function of the center of mass speed for each class of 
controller. LSTM models outperform other model classes across all speeds, but 
especially at slow speeds. D) Box plots denoting the distribution of rewards for 
each model class as a function of behavior category. LSTM models outperform 
other classes across all behavior, but especially those with slow center of mass 
speed. White lines indicate the median, box limits indicate the interquartile 
range, box whiskers indicate the 10th and 90th percentiles. E) The proportion 
of episodes exceeding a given duration for models with LSTM decoders across 
all KL regularization coefficients. Models with higher KL regularization are 
generally less robust than those with lower KL regularization, consistent with 
an increase in latent noise. F) Violin plots denoting the distribution of rewards 
on held-out natural behavior for each model as a function of KL regularization. 

Increasing the KL regularization coefficient marginally decreases the reward 
distribution of the models. White lines indicate the median. G, We trained five 
models with different reference window lengths using an LSTM decoder with  
a KL regularization of 1e-4. Violin plots denote the distribution of rewards on 
held-out natural behavior for each model. Models with reference windows of 
length 5 or shorter exhibit comparable performance, while a reference window 
of 10 exhibits poorer performance. Grey lines indicate the quartiles. H) The 
proportion of episodes exceeding a given duration. Models with longer 
reference window length are generally more robust than those with shorter 
reference window lengths, with the most robust model being that with a 
reference window length of 5. Shaded regions indicate the standard error of the 
mean over sessions. I) The distribution of joint angles during imitation closely 
match those of STAC-registered skeletal models during imitation. Data is from 
a model with an LSTM decoder and a KL regularization of 1e-4. Box centers 
indicate the median, box limits indicate the interquartile range, box whiskers 
indicate the maximum or minimum values up to 1.5 times the interquartile 
range from the box limits.
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Extended Data Fig. 4 | Neurons in the DLS and MC encode posture across 
many body parts to a degree consistent with previous reports during 
unrestrained behavior. A, C) Proportion of neurons in DLS and MC best 
predicted by each feature class. B, D) Violin plots showing the distribution of 
cross-validated log-likelihood ratios (CV-LLR) of GLMs trained to predict spike 
counts using different feature classes. E, F) Box plots showing the distribution 
of deviance-ratio pseudo r-squared values of GLMs trained to predict spike 

counts using different feature classes. White lines indicate the median, boxes 
indicate the interquartile range, and whiskers indicate the 10th and 90th 
percentiles. G, H) Empirical cumulative distribution functions denoting the 
proportion of neurons in DLS and MC with peak GLM predictivity below a given 
pseudo r-squared value. The distributions resemble previous reports in rats 
during spontaneous behavior42.



Extended Data Fig. 5 | Encoding properties are similar across striatal cell 
types. A-C) Proportion of neurons in DLS and MC best predicted by each 
feature class for each cell type. D-F) Box plots showing the distribution of 
cross-validated log-likelihood ratios relative to a mean firing rate model for 
GLMs trained to predict spike counts using different feature classes. White 
lines indicate the median, boxes indicate the interquartile range, and whiskers 

indicate the 10th and 90th percentiles. G-H) Comparison of the best 
computational feature derived from the network and representational feature 
GLM CV-LLRs for each neuron. GLMs based on the inverse dynamics models 
(computational features) outperform those based on representational features 
for the majority of classified neurons for all cell types (p < .001, permutation 
test).
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Extended Data Fig. 6 | Neurons in the DLS and MC encode future movement 
during natural behavior. We trained GLMs to predict neural activity from 
measurable features of movement and from features of the ANN controllers 
while introducing time lags ranging from -1000 ms to 300 ms between neural 
activity and the features. A) Histograms depicting the distribution of time lags 
for maximally predictive GLMs when using joint angle predictors. Time lags 
less than zero correspond to neurons whose future movements better predict 
neural activity (premotor), while time lags greater than zero correspond to 
neurons whose past movements best predict neural activity (postmotor).  

B) CVLLR relative to models trained with a time lag of 0 ms averaged across 
neurons. Shaded regions indicate the standard error of the mean. The peak 
average CVLLR occurs at -200 ms for all cell types. C, D) Same as A-B, except 
using features from the inverse dynamics model (LSTM hidden layer 1) as GLM 
predictors for a model with an LSTM decoder and a KL regularization of 1e-4. 
Peak predictivity occurs closer to a time lag of zero, consistent with the network’s 
representation of desired future state and inverse dynamics. E, F) Same as A-B 
for neurons in MC. G, H) Same as C-D for neurons in MC.



Extended Data Fig. 7 | Comparing imitation performance and neural 
predictivity of models trained to control bodies of different masses.  
A) We trained five models with an LSTM decoder and a KL regularization of  
1e-4 to control bodies of different masses. Violin plots denote the distribution 
of rewards on held-out natural behavior for each model. Several models 
controlling bodies with masses other than the standard mass exhibited 
reduced performance. White lines indicate medians. B) The proportion of 
episodes exceeding a given duration. Shaded regions indicate S.E.M across 
individuals. C-D) Box plots depicting the distribution of cross-validated 
log-likelihood ratios across neurons of GLMs trained to predict neural activity 
from network features. The CVLLR for each neuron is expressed relative to the 
likelihood of a GLM trained to predict neural activity using network features 

from the standard mass model. Values greater than zero imply a model more 
predictive of neural activity than those derived from the standard mass model, 
and vice versa. White lines indicate the median, box limits indicate the quartiles, 
whiskers indicate the 10th and 90th percentiles. Stars indicate that a greater 
proportion of neurons are better predicted by GLMs trained using features 
from the standard mass model than from the alternative mass model (Bonferroni 
corrected, α = .05, permutation test). E-F) Average WUC similarity between 
RDMs derived from network layers and neural activity in DLS or MC. Error  
bars indicate S.E.M across individuals. Arrows indicate significantly different 
similarity distributions across animals (Benjamini-Hochberg corrected, false 
discovery rate α = .05, one-sided t-test).
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Extended Data Fig. 8 | Comparing imitation performance and neural 
predictivity of models trained to control bodies of the same total mass 
with different head masses. A) We trained five models with an LSTM decoder 
and a KL regularization of 1e-4 to control bodies of the same total mass with 
different relative masses between the head and the rest of the body. Violin plots 
denote the distribution of rewards on held-out natural behavior for each model. 
Several models controlling bodies with masses other than the standard mass 
exhibited reduced performance. White lines indicate medians. B) The proportion 
of episodes exceeding a given duration. Shaded regions indicate S.E.M across 
individuals. C-D) Box plots depicting the distribution of cross-validated log- 
likelihood ratios across neurons of GLMs trained to predict neural activity  
from network features. The CVLLR for each neuron is expressed relative to the 

likelihood of a GLM trained to predict neural activity using network features 
from the standard mass model. Values greater than zero imply a model more 
predictive of neural activity than those derived from the standard mass model, 
and vice versa. White lines indicate the median, box limits indicate the quartiles, 
whiskers indicate the 10th and 90th percentiles. Stars indicate that a greater 
proportion of neurons are better predicted by GLMs trained using features 
from the standard mass model than from the alternative mass model (Bonferroni 
corrected, α = .05, permutation test). E-F) Average WUC similarity between 
RDMs derived from network layers and neural activity in DLS or MC. Error bars 
indicate S.E.M across individuals. Arrows indicate significantly different 
similarity distributions across animals (Benjamini-Hochberg corrected, false 
discovery rate α = .05, one-sided t-test).



Extended Data Fig. 9 | The representational structures of DLS and MC 
resemble an inverse model more than alternative control models. A) To 
compare the representational structure of neural activity in DLS and MC across 
different candidate computational models we used B) rollouts from an inverse 
model to collect state-action pairs to train C) forward and sequential models 
with supervised learning. D-F) Across-subject representational similarity 
between control models and neural activity. The latent representation of an 
inverse model more closely resembles the structure of neural activity in DLS 

and MC than the latent representation of forward or sequential models. G-I) The 
latent variability of an inverse model better predicts the structure of neural 
variability than representational models. Error bars indicate S.E.M. Icicles and 
dew drops indicate significant differences from the noise ceiling and zero 
(Bonferroni corrected, α = .05, one-sided t-test). Gray bars indicate the estimated 
noise ceiling of the true model. Arrows indicate significant differences between 
features (Benjamini-Hochberg corrected, false discovery rate α = .05, one- 
sided t-test). Points indicate individual animals.
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Extended Data Fig. 10 | Inverse dynamics models predict putative single- 
unit neural activity better than alternative control models and feedback. 
A-B) Box plots showing the distribution of cross-validated log-likelihood ratios 
(CV-LLR) relative to mean firing-rate models of GLMs trained to predict spike 
counts using different feature classes. White lines indicate the median, boxes 
indicate the interquartile range, and whiskers indicate the 10th and 90th 
percentiles.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Multi-camera video was acquired using Campy (https://github.com/ksseverson57/campy). Camera calibration was performed using the 
MATLAB Camera Calibration App (Mathworks) and opencv-python. Electrophysiological data was acquired using RHD2000 interface (Intan).

Data analysis We estimated the 3D pose from multi-camera videos using DANNCE (version 1.3) (Dunn et al. 2021).  
 
Skeletal registration was performed using a custom implementation of simultaneous tracking and calibration (STAC) (Wu et al. 2013).  
 
Inverse dynamics model training was performed using CoMic (Hasenclever et al. 2020).  
 
Inverse dynamic model inference was performed using a custom python package, npmp_embedding, which depends on dm_control, 
tensorflow (version 2.3), and MuJoCo (version 2.10).  
 
Behavioral classification was performed using a custom MATLAB implementation of motion-mapper (Berman et al. 2014).  
 
Spike sorting was performed using Ephys2, a modification of FAST (Dhawale et al. 2017).  
 
All data analyses were performed with custom code written in Python using packages from the PyData stack (NumPy, SciPy, StatsModels, Sci-
kit learn, matplotlib), as well as rsatoolbox 3.0 for representational similarity analyses. Alternative control models were trained using custom 
python code dependent on Tensorflow 2.8.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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The generated datasets are available from the corresponding author upon reasonable request.
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Reporting on sex and gender N/A

Population characteristics N/A
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine the number of subjects in our study but our sample sizes for electrophysiological data are 
similar to those reported in previous publications (Jin et al., 2014; Panigrahi et al., 2015; Rueda-Orozco and Robbe, 2015; Dhawale & Wolff 
2021). These include N=3 animals with implants in the sensorimotor striatum, and N=4 animals with implants in the motor cortex.

Data exclusions No animals were excluded from behavioral analyses. One of the implanted animals (motor cortex) yielded a recording in which no neurons 
could be detected, and thus this animal was excluded from electrophysiological analyses.

Replication All recordings were performed with multiple animals per group (n=3) and yielded consistent, reproducible findings.

Randomization Animals were assigned to groups for implantation in the striatum or motor cortex using a computer-generated random number list. This 
ensured an unbiased distribution and balanced potential covariates like litter order, without directly controlling for each covariate. 

Blinding Blinding was not feasible in our study because individual rats could be easily identified by distinctive features such as fur pattern, size, and 
behavior. Given personnel constraints, the same experimenter conducted most of the surgical implantations and behavioral experiments, 
making it impossible to blind them to the implantation sites. To minimize bias, we employed standardized and automated procedures for data 
collection and analysis where applicable.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
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studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.
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indicating whether exclusion criteria were pre-established.
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controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
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Access & import/export compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Experimental subjects were female Long Evans rats (RRID: RGD_2308852) 3-12 months old at the start of recording.

Wild animals The study did not involve wild animals.

Reporting on sex The study only used female rats

Field-collected samples The study did not contain samples collected from the field.

Ethics oversight The care and experimental manipulation of all animals were reviewed and approved by the Harvard Institutional Animal Care and 
Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.



7

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 

or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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