import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# Define the neural network fractal
def define_layers():
return {
'Suis': ['Patient Care', 'Hospital Records', 'Disclosure Risk', 'Collaborators', 'Databases', 'Analytic Scripts', ], # Static
'Voir': ['Information'],
'Choisis': ['Baseline', 'Decision'],
'Deviens': ['Adverse Event Markers', 'Exposure of Interest', 'Other Changes'],
"M'èléve": ['Mortality', 'Organ Failure', 'Hospitalization', 'Physical Frailty', 'Follow-up Care']
}
# Assign colors to nodes
def assign_colors():
color_map = { # Dynamic
'yellow': ['Information'],
'paleturquoise': ['Analytic Scripts', 'Decision', 'Other Changes', 'Follow-up Care'],
'lightgreen': ['Databases', 'Exposure of Interest', 'Organ Failure', 'Physical Frailty', 'Hospitalization'],
'lightsalmon': [
'Disclosure Risk', 'Collaborators', 'Baseline',
'Adverse Event Markers', 'Mortality'
],
}
return {node: color for color, nodes in color_map.items() for node in nodes}
# Calculate positions for nodes
def calculate_positions(layer, x_offset):
y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
return [(x_offset, y) for y in y_positions]
# Create and visualize the neural network graph
def visualize_nn():
layers = define_layers()
colors = assign_colors()
G = nx.DiGraph()
pos = {}
node_colors = []
# Add nodes and assign positions
for i, (layer_name, nodes) in enumerate(layers.items()):
positions = calculate_positions(nodes, x_offset=i * 2)
for node, position in zip(nodes, positions):
G.add_node(node, layer=layer_name)
pos[node] = position
node_colors.append(colors.get(node, 'lightgray'))
# Add edges (automated for consecutive layers)
layer_names = list(layers.keys())
for i in range(len(layer_names) - 1):
source_layer, target_layer = layer_names[i], layer_names[i + 1]
for source in layers[source_layer]:
for target in layers[target_layer]:
G.add_edge(source, target)
# Draw the graph
plt.figure(figsize=(12, 8))
nx.draw(
G, pos, with_labels=True, node_color=node_colors, edge_color='gray',
node_size=3000, font_size=15, connectionstyle="arc3,rad=0.2"
)
plt.title("Ecosystem Integration", fontsize=23)
plt.show()
# Run the visualization
visualize_nn()