Arte-Scienza#
Autoencoder
Witness: life, memory, emotion, collective, science, morality are captured using propensities. For instance, \(\displaystyle \int_0^{\infty}\! f(t) = F(t)\) is truer to life than \(\lim_{t \to 0} f(t)\), which is for brooders like Hamlet. No wonder his dad asked “why is it so particular with thee?” Oversampling a specific life experience instead of moving on
with life, a cumulative density function or \(1-F(t)\)
1. fo(t)
\
2. So(t) -> 4. X -> 5. b -> 6. SV
/
3. ho(t)
Biology 1, 2, 3#
\(h(t)=\frac{f(t)}{S(t)}\)
Personal 5, 6#
\(\beta \cdot \ SV'\)
1. Chaos \ 2. Frenzy -> 4. Dionysian -> 5. Algorithm -> 6. Binary / 3. Emotion
Show code cell source
import matplotlib.pyplot as plt
import numpy as np
# Define the exponential distribution parameters
lambda_ = 0.5 # rate parameter
# Define the time range
t = np.linspace(0, 10, 500)
# Define the functions for the exponential distribution
f_t = lambda_ * np.exp(-lambda_ * t) # PDF
S_t = np.exp(-lambda_ * t) # Survival function
h_t = lambda_ * np.ones_like(t) # Hazard function
# Create the 1x3 panel plot
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
# Plot the PDF
axes[0].plot(t, f_t, label='f(t) = λ * exp(-λt)')
axes[0].set_title('Probability Density Function (f(t))')
axes[0].set_xlabel('Time (t)')
axes[0].set_ylabel('f(t)')
axes[0].legend()
axes[0].grid(True)
axes[0].spines['top'].set_visible(False)
axes[0].spines['right'].set_visible(False)
# Plot the Survival Function
axes[1].plot(t, S_t, label='S(t) = exp(-λt)', color='orange')
axes[1].set_title('Survival Function (S(t))')
axes[1].set_xlabel('Time (t)')
axes[1].set_ylabel('S(t)')
axes[1].legend()
axes[1].grid(True)
axes[1].spines['top'].set_visible(False)
axes[1].spines['right'].set_visible(False)
# Plot the Hazard Function
axes[2].plot(t, h_t, label='h(t) = λ', color='green')
axes[2].set_title('Hazard Function (h(t))')
axes[2].set_xlabel('Time (t)')
axes[2].set_ylabel('h(t)')
axes[2].legend()
axes[2].grid(True)
axes[2].spines['top'].set_visible(False)
axes[2].spines['right'].set_visible(False)
# Adjust layout
plt.tight_layout()
# Display the plot
plt.show()
Important
Conceptual Summary
Exposition (\(f(t < T)\)): Introduces the backstory and context.
Prospects (\(S(T > t)\)): Represents the unfolding narrative arc and potential futures.
Opportunities (\(h(t)\)): Indicates the tools and moments available for action.
Collective Unconscious (\(X\)): The underlying, shared human experiences.
Algorithm (\(\beta\)): The guiding principles and wisdom.
Personal Application (\(SV'\)): How these elements are applied individually.
Reflection on Great Art
Great art, like “Hamlet,” eschews a tradit`ional arc, instead presenting a flat hazard function. This reflects an engagement with the narrative that remains constant, allowing for continuous ambiguity and depth. Such a narrative keeps the audience perpetually engaged, akin to the complex variations in a musical progression that maintain interest through subtle changes rather than a single climactic peak.
This holistic approach to narrative analysis, blending mathematical rigor with literary insight, provides a robust framework for understanding and appreciating the depth and complexity of great art.
Markdown with LaTeX#
Sensory Organs and Probability Functions#
Sensory Input and the Probability Density Function#
The sensory organs (eyes, nose, ears, skin) experience the world as a function of time. Let \( f(t) \) be the probability density function (pdf) representing the intensity of sensory input at time \( t \).
\( f(t) \)
Sensory Experience: The First Derivative#
The immediate sensory experience at any moment is given by the first derivative of the probability density function.
\( f'(t) \)
Memory: The Cumulative Distribution Function#
Memory is an accumulation of sensory experiences over time, represented by the cumulative distribution function (cdf), which is the integral of the pdf between two time points \( t_1 \) and \( t_2 \).
\( F(t) = \int_{t_1}^{t_2} f(u) \, du \)
Behavior and Propensities: The Hazard Function#
Behavior and propensities are influenced by both immediate sensory input and memory. This relationship is captured by the hazard function \( h(t) \), which is the ratio of the pdf to the survival function \( S(t) = 1 - F(t) \).
\( h(t) = \frac{f(t)}{1 - F(t)} \)
Visual Representation#
Show code cell source
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# Define the time variable
t = np.linspace(0, 10, 1000)
# Define the probability density function (pdf)
pdf = norm.pdf(t, loc=5, scale=1)
# Define the first derivative of the pdf
pdf_derivative = np.gradient(pdf, t)
# Define the cumulative distribution function (cdf)
cdf = norm.cdf(t, loc=5, scale=1)
# Define the survival function
survival_function = 1 - cdf
# Define the hazard function
hazard_function = pdf / survival_function
# Create a 1x3 panel plot
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Plot the pdf and its first derivative
axes[0].plot(t, pdf, label='$f(t)$')
axes[0].plot(t, pdf_derivative, label="$f'(t)$", linestyle='dashed')
axes[0].set_title('Probability Density Function and its Derivative')
axes[0].legend()
axes[0].grid(True, linestyle='--', alpha=0.7)
axes[0].spines['top'].set_visible(False)
axes[0].spines['right'].set_visible(False)
# Plot the cdf over a specific interval
axes[1].plot(t, cdf, label='$F(t)$')
axes[1].fill_between(t, 0, cdf, where=(t >= 3) & (t <= 7), color='gray', alpha=0.5)
axes[1].set_title('Cumulative Distribution Function')
axes[1].legend()
axes[1].grid(True, linestyle='--', alpha=0.7)
axes[1].spines['top'].set_visible(False)
axes[1].spines['right'].set_visible(False)
# Plot the hazard function
axes[2].plot(t, hazard_function, label='$h(t)$')
axes[2].set_title('Hazard Function (i.e., flow or engagment)')
axes[2].legend()
axes[2].grid(True, linestyle='--', alpha=0.7)
axes[2].spines['top'].set_visible(False)
axes[2].spines['right'].set_visible(False)
plt.tight_layout()
plt.show()
Social 4#
\(X\)