Appendix

Appendix#

We few, we happy few
Henry V

Hide code cell source
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

# Define the neural network fractal
def define_layers():
    return {
        'Suis': ['Fewer Men', 'Greater Honor', 'And If To Live', 'Country Loss', "If We Are Mark’d", 'To Die, We Enough\n 95/5', ], # Static
        'Voir': ['Information\n 80/20'],  
        'Choisis': ['Baseline', 'Decision\n 51/49'],  
        'Deviens': ['Adverse Event Markers', 'Comorbidity/ICD Code', 'Temporal Changes\n 20/80'],  
        "M'èléve": ['Mortality Rate', 'Organ Failure',  'Hospitalization', 'Dependency', 'Physical Frailty\n 5/95']  
    }

# Assign colors to nodes
def assign_colors():
    color_map = { # Dynamic
        'yellow': ['Information\n 80/20'],  
        'paleturquoise': ['To Die, We Enough\n 95/5', 'Decision\n 51/49', 'Temporal Changes\n 20/80', 'Physical Frailty\n 5/95'],  
        'lightgreen': ["If We Are Mark’d", 'Comorbidity/ICD Code', 'Organ Failure', 'Dependency', 'Hospitalization'],  
        'lightsalmon': [
            'And If To Live', 'Country Loss', 'Baseline',  
            'Adverse Event Markers', 'Mortality Rate'
        ],
    }
    return {node: color for color, nodes in color_map.items() for node in nodes}

# Calculate positions for nodes
def calculate_positions(layer, x_offset):
    y_positions = np.linspace(-len(layer) / 2, len(layer) / 2, len(layer))
    return [(x_offset, y) for y in y_positions]

# Create and visualize the neural network graph
def visualize_nn():
    layers = define_layers()
    colors = assign_colors()
    G = nx.DiGraph()
    pos = {}
    node_colors = []

    # Add nodes and assign positions
    for i, (layer_name, nodes) in enumerate(layers.items()):
        positions = calculate_positions(nodes, x_offset=i * 2)
        for node, position in zip(nodes, positions):
            G.add_node(node, layer=layer_name)
            pos[node] = position
            node_colors.append(colors.get(node, 'lightgray'))   

    # Add edges (automated for consecutive layers)
    layer_names = list(layers.keys())
    for i in range(len(layer_names) - 1):
        source_layer, target_layer = layer_names[i], layer_names[i + 1]
        for source in layers[source_layer]:
            for target in layers[target_layer]:
                G.add_edge(source, target)

    # Draw the graph
    plt.figure(figsize=(12, 8))
    nx.draw(
        G, pos, with_labels=True, node_color=node_colors, edge_color='gray',
        node_size=3000, font_size=15, connectionstyle="arc3,rad=0.2"
    )
    plt.title("Holy Grail", fontsize=23)
    plt.show()

# Run the visualization
visualize_nn()
../_images/6778f7c720e9e85a6cb4989d37cc7fe90a53a802fd3dabc347969eaf01812c37.png
https://www.ledr.com/colours/white.jpg

Fig. 7 This visualization encodes a hierarchical decision-making network, with Suis → Voir → Choisis → Deviens → M’élève capturing a structured progression from static records to dynamic evolution, ultimately culminating in clinical outcomes. The color scheme aligns with RICHER’s dynamic layers—paleturquoise (analytic scripts & decision layers), lightgreen (databases & exposure markers), lightsalmon (risk & mortality nodes), and yellow (informational precondition)—while grey nodes represent neutral or unclassified elements, acting as stabilizers or latent connectors in the system. The weighted distributions (e.g., 95/5, 80/20, 51/49, 20/80, 5/95) reflect asymmetries in signal strength, agency, and iterative selection, mirroring an entropy-driven neural network encoding causality within a medical epistemic frame. The title “Holy Grail” was chosen for irony, aspiration, and as a reflection of a personalized ideal within the model, thus working as a provocative framing device opening up the question of what exactly is being optimized. Our intent is not to capture the epistemic structure of this neural network as a decision-making crucible—a layered process of filtration, iteration, and emergence—and so the title doesn’t reflect compression, thresholds, or the transformation of knowledge into decisive action. But it just might as well achieve those things as emergent phenomena#