Apollo & Dionysus

Apollo & Dionysus#

+ Expand
  1. NYU
  2. GTPCI
  3. Mentor
  4. Epi
  5. NIA
  6. Taxes
  7. Kemi

-- Fox News

History is a fractal unfolding of entropy and order, a ceaseless churn wherein civilizations rise on the back of extracted resources, only to collapse under the weight of their own complexity

History. It’s a fractal unfolding of entropy and order, a ceaseless churn wherein civilizations rise on the back of extracted resources, only to collapse under the weight of their own complexity
β€” Yours Truly
Hide code cell source
import matplotlib.pyplot as plt
import numpy as np

def draw_branch(x, y, angle, depth, length, ax):
    if depth == 0:
        return
    x_end = x + length * np.cos(angle)
    y_end = y + length * np.sin(angle)
    
    ax.plot([x, x_end], [y, y_end], 'k-', lw=2)
    
    new_length = length * 0.7
    draw_branch(x_end, y_end, angle - np.pi/6, depth - 1, new_length, ax)
    draw_branch(x_end, y_end, angle + np.pi/6, depth - 1, new_length, ax)

fig, ax = plt.subplots(figsize=(6, 8))
ax.set_xticks([])
ax.set_yticks([])
ax.set_frame_on(False)

draw_branch(0, -1, np.pi/2, 10, 1, ax)

plt.show()
../_images/c79325ce991bc1e095356a22a99433981d401a78c17e89e297ded0c76bfb251e.png
https://www.ledr.com/colours/white.jpg

Fig. 13 Strange Attractor (Chaotic System). This code simulates a simple chaotic attractor using the Lorenz system.#

Hide code cell source
from scipy.integrate import solve_ivp
import numpy as np
import matplotlib.pyplot as plt

def lorenz(t, state, sigma=10, beta=8/3, rho=28):
    x, y, z = state
    dxdt = sigma * (y - x)
    dydt = x * (rho - z) - y
    dzdt = x * y - beta * z
    return [dxdt, dydt, dzdt]

t_span = (0, 50)
initial_state = [0.1, 0.0, 0.0]
t_eval = np.linspace(t_span[0], t_span[1], 10000)

sol = solve_ivp(lorenz, t_span, initial_state, t_eval=t_eval)

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection="3d")
ax.plot(sol.y[0], sol.y[1], sol.y[2], lw=0.5)
ax.set_title("Lorenz Attractor (Chaotic System)")

plt.show()
../_images/51175dbaa30ed66c3d62d632be9cd3e5975ca59a2be03e509177f22f76056e0b.png
https://www.ledr.com/colours/white.jpg

Fig. 14 Fractal Structure (Self-Similarity). A visualization of the famous Mandelbrot fractal, representing infinite complexity at all scales.#

Hide code cell source
import numpy as np
import matplotlib.pyplot as plt

def mandelbrot(c, max_iter=100):
    z = c
    for n in range(max_iter):
        if abs(z) > 2:
            return n
        z = z*z + c
    return max_iter

xmin, xmax, ymin, ymax = -2.0, 1.0, -1.5, 1.5
width, height = 1000, 1000
x = np.linspace(xmin, xmax, width)
y = np.linspace(ymin, ymax, height)
mandelbrot_set = np.zeros((width, height))

for i in range(width):
    for j in range(height):
        mandelbrot_set[i, j] = mandelbrot(complex(x[i], y[j]))

plt.figure(figsize=(8, 8))
plt.imshow(mandelbrot_set.T, extent=[xmin, xmax, ymin, ymax], cmap="inferno")
plt.title("Mandelbrot Set (Fractal Structure)")
plt.colorbar()
plt.show()
../_images/334c79cba2dee1acf52301812d0d65858d3b775c7851119e97e812ed14f66372.png
https://www.ledr.com/colours/white.jpg

Fig. 15 Immitation. This is what distinguishes humans (really? self-similar is all fractal). We reproduce language, culture, music, behaviors, weapons of extraordinarily complex nature. A ritualization of these processes stablizes its elements and creates stability and uniformity, as well as opportunities for conflict and negotiation. These codes illustrate the key points made in Sapolsky’s discussion: the limits of reductionism, the role of chaos in biological systems, and the fundamental nature of self-similarity in complex structures.#